Publications by authors named "Daniel Kapec"

Recent work has shown that loop corrections from massless particles generate 3/2logT_{Hawking} corrections to black hole entropy which dominate the thermodynamics of cold near-extreme charged black holes. Here we adapt this analysis to near-extreme Kerr black holes. Like AdS_{2}×S^{2}, the near-horizon extreme Kerr (NHEK) metric has a family of normalizable zero modes corresponding to reparametrizations of boundary time.

View Article and Find Full Text PDF

The event horizon telescope (EHT) is expected to soon produce polarimetric images of the supermassive black hole at the centre of the neighbouring galaxy M87. There are indications that this black hole is rapidly spinning. General relativity predicts that such a high-spin black hole has an emergent conformal symmetry near its event horizon.

View Article and Find Full Text PDF

The Event Horizon Telescope image of the supermassive black hole in the galaxy M87 is dominated by a bright, unresolved ring. General relativity predicts that embedded within this image lies a thin "photon ring," which is composed of an infinite sequence of self-similar subrings that are indexed by the number of photon orbits around the black hole. The subrings approach the edge of the black hole "shadow," becoming exponentially narrower but weaker with increasing orbit number, with seemingly negligible contributions from high-order subrings.

View Article and Find Full Text PDF

We use the subleading soft-graviton theorem to construct an operator T_{zz} whose insertion in the four-dimensional tree-level quantum gravity S matrix obeys the Virasoro-Ward identities of the energy momentum tensor of a two-dimensional conformal field theory (CFT_{2}). The celestial sphere at Minkowskian null infinity plays the role of the Euclidean sphere of the CFT_{2}, with the Lorentz group acting as the unbroken SL(2,C) subgroup.

View Article and Find Full Text PDF