Publications by authors named "Daniel Kajanek"

The main objective of this article is to provide new information on the effects of mechanical pretreatment of AZ80 magnesium alloy ground with SiC emery papers of different grain sizes on the plasma electrolytic oxidation (PEO) process and corrosion properties of AZ80 in 0.1 M NaCl solution. Then, the roughness of the coated samples was measured by confocal microscopy.

View Article and Find Full Text PDF

A progressive type of tungsten-doped DLC coating was applied to a quenched and tempered 100Cr6 steel with the aim to improve the wear and corrosion properties in simulated seawater conditions and to compare the performance to conventional DLC coating. Tungsten doping caused a shift of the corrosion potential (E) to a lower negative value of -172 mV, while the conventional DLC exhibited an E of -477 mV. In dry conditions, the W-DLC coefficient of friction is slightly higher than that of the conventional DLC (0.

View Article and Find Full Text PDF

Low alloyed steels of low, medium, or high strength are frequently used for many applications in the automotive, civil (bridges), aerospace, and petrochemical industries. A variety of thermomechanical regimes, in which these steels can be produced, enable customization of their matrix with respect to their fatigue resistance, resistance against friction and impact wear, fracture toughness, corrosion resistance, etc. This study analyses the influence of magnetising conditions on Barkhausen noise and other extracted parameters.

View Article and Find Full Text PDF

Fatigue tests were performed on the AZ91 cast alloy to identify the mechanisms of the fatigue crack initiation. In different fatigue regions, different mechanisms were observed. In the low and high cycle fatigue regions, slip markings formation accompanied with MgAl particles cracking were observed.

View Article and Find Full Text PDF

Impact based surface treatments with adequate kinetic energy have favorable effects on promoting cell-substrate interactions, reducing bacterial adhesion, and enhancing fatigue performance of metallic biomaterials. Here, we used both numerical and experimental approaches to evaluate the potential of these treatments for addressing the major issue associated with the application of pure iron in biomedical implants, i.e.

View Article and Find Full Text PDF

Pure iron and its biocompatible and biodegradable alloys have a high potential to be used for temporary load bearing medical implants. Nevertheless, the formation of passive iron oxide and hydroxide layers, which lead to a considerably low degradation rate at the physiological environment, has highly restricted their application. Herein we used numerical and experimental methods to evaluate the effect of severe shot peening, as a scalable mechanical surface treatment, on adjusting the performance of pure iron for biomedical applications.

View Article and Find Full Text PDF