Factor XIIIa (FXIIIa) is a cysteine transglutaminase that catalyzes the last step in the coagulation process. An anion-binding site inhibition of FXIIIa is a paradigm-shifting strategy that may offer key advantages of controlled inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks.
View Article and Find Full Text PDFFactor XIIa (FXIIa) functions as a plasma serine protease within the contact activation pathway. Various animal models have indicated a substantial role for FXIIa in thromboembolic diseases. Interestingly, individuals and animals with FXII deficiency seem to maintain normal hemostasis.
View Article and Find Full Text PDFGenome-wide gene expression analysis and animal modeling indicate that melanoma differentiation associated gene-9 (mda-9, Syntenin, Syndecan binding protein, referred to as MDA-9/Syntenin) positively regulates melanoma metastasis. The MDA-9/Syntenin protein contains two tandem PDZ domains serving as a nexus for interactions with multiple proteins that initiate transcription of metastasis-associated genes. Although targeting either PDZ domain abrogates signaling and prometastatic phenotypes, the integrity of both domains is critical for full biological function.
View Article and Find Full Text PDFCathepsin G (CatG) is a pro-inflammatory neutrophil serine protease that is important for host defense, and has been implicated in several inflammatory disorders. Hence, inhibition of CatG holds much therapeutic potential; however, only a few inhibitors have been identified to date, and none have reached clinical trials. Of these, heparin is a well-known inhibitor of CatG, but its heterogeneity and bleeding risk reduce its clinical potential.
View Article and Find Full Text PDFThrombotic disorders are among the leading causes of deaths worldwide. Anticoagulants are frequently prescribed for their prevention and/or treatment. Current anticoagulants, which target either thrombin or factor Xa, are plagued with a number of drawbacks, the most important of which is the increased risk of internal bleeding.
View Article and Find Full Text PDFNatural glycosaminoglycans (GAGs) are arguably the most diverse collection of natural products. Unfortunately, this bounty of structures remains untapped. Decades of research has realized only one GAG-like synthetic, small-molecule drug, fondaparinux.
View Article and Find Full Text PDFObjective: Cathepsin G (CatG) is a cationic serine protease with wide substrate specificity. CatG is reported to play a role in several inflammatory pathologies. Thus, we aimed at identifying a potent and allosteric inhibitor of CatG to be used as a platform in further drug development opportunities.
View Article and Find Full Text PDFSulfated glycosaminoglycans (GAGs), or synthetic mimetics thereof, are not favorably viewed as orally bioavailable drugs owing to their high number of anionic sulfate groups. Devising an approach for oral delivery of such highly sulfated molecules would be very useful. This work presents the concept that conjugating cholesterol to synthetic sulfated GAG mimetics enables oral delivery.
View Article and Find Full Text PDFCardiovasc Hematol Agents Med Chem
March 2023
Background: Human factor XIIa (FXIIa) is a plasma serine protease that plays a significant role in several physiological and pathological processes. Animal models have revealed an important contribution of FXIIa to thromboembolic diseases. Remarkably, animals and patients with FXII deficiency appear to have normal hemostasis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2022
The insulin-like growth factor-1 receptor (IGF-1R) is a receptor tyrosine kinase (RTK) that plays critical roles in cancer. Microarray, computational, thermodynamic, and cellular imaging studies reveal that activation of IGF-1R by its cognate ligand IGF1 is inhibited by shorter, soluble heparan sulfate (HS) sequences (e.g.
View Article and Find Full Text PDFIntroduction: Anticoagulation with no bleeding complications is the current objective of drug discovery programs in the area of treating and/or preventing thromboembolism. Despite the promises of therapeutics targeting factors XI(a) and XII(a), none has been approved thus far. Clinically used thrombin- and/or factor Xa-based anticoagulants continue to be associated with a significant bleeding risk which limits their safe use in a broad range of thrombotic patients.
View Article and Find Full Text PDFPharmaceuticals (Basel)
August 2021
The anticoagulant activity of lignosulfonic acid sodium (LSAS), a non-saccharide heparin mimetic, was investigated in this study. LSAS is a relatively safe industrial byproduct with similar polyanionic characteristics to that of heparin. Human plasma clotting assays, fibrin polymerization testing, and enzyme inhibition assays were exploited to investigate the anticoagulant activity of LSAS.
View Article and Find Full Text PDFHuman factor XIa (hFXIa) has emerged as an attractive target for development of new anticoagulants that promise higher level of safety. Different strategies have been adopted so far for the design of anti-hFXIa molecules including competitive and non-competitive inhibition. Of these, allosteric dysfunction of hFXIa's active site is especially promising because of the possibility of controlled reduction in activity that may offer a route to safer anticoagulants.
View Article and Find Full Text PDFBackground: Human factor XIa (FXIa) is an actively pursued target for development of safer anticoagulants. Our long-standing hypothesis has been that allosterism originating from heparin-binding site(s) on coagulation enzymes is a promising approach to yield safer agents.
Objectives: To develop a synthetic heparin mimetic as an inhibitor of FXIa so as to reduce clot formation in vivo but not carry high bleeding risk.
Cystic fibrosis (CF) is a disease of dysregulated salt and fluid homeostasis that results in the massive accumulation of neutrophil elastase, resulting in lung degradation and death. The current CF therapy relies on inhaled deoxyribonuclease and hypertonic saline but does not address the elastolytic degradation of the lung. We reasoned that allosteric agents targeting the heparin-binding site of neutrophil elastase would offer a therapeutic paradigm.
View Article and Find Full Text PDFGlycosaminoglycans (GAGs) are very complex, natural anionic polysaccharides. They are polymers of repeating disaccharide units of uronic acid and hexosamine residues. Owing to their template-free, spatiotemporally-controlled, and enzyme-mediated biosyntheses, GAGs possess enormous polydispersity, heterogeneity, and structural diversity which often translate into multiple biological roles.
View Article and Find Full Text PDFAlthough heparan sulfate (HS) has been implicated in facilitating entry of enveloped viruses including herpes simplex virus (HSV), small molecules that effectively compete with this abundant, cell surface macromolecule remain unknown. We reasoned that entry of HSV-1 involving its glycoprotein D (gD) binding to HS could be competitively targeted through small, synthetic, nonsaccharide glycosaminoglycan mimetics (NSGMs). Screening a library of NSGMs identified a small, distinct group that bound gD with affinities of 8-120 nM.
View Article and Find Full Text PDFCystic fibrosis (CF) is a multifactorial disease in which dysfunction of protease-antiprotease balance plays a key role. The current CF therapy relies on dornase α, hypertonic saline, and antibiotics and does not address the high neutrophil elastase (NE) activity observed in the lung and sputum of CF patients. Our hypothesis is that variants of heparin, which potently inhibit NE but are not anticoagulant, would help restore the protease-antiprotease balance in CF.
View Article and Find Full Text PDFMed Res Rev
September 2018
Factor XIa (FXIa) is a serine protease homodimer that belongs to the intrinsic coagulation pathway. FXIa primarily catalyzes factor IX activation to factor IXa, which subsequently activates factor X to factor Xa in the common coagulation pathway. Growing evidence suggests that FXIa plays an important role in thrombosis with a relatively limited contribution to hemostasis.
View Article and Find Full Text PDFDespite the development of promising direct oral anticoagulants, which are all orthosteric inhibitors, a sizable number of patients suffer from bleeding complications. We have hypothesized that allosterism based on the heparin-binding exosites presents a major opportunity to induce sub-maximal inhibition of coagulation proteases, thereby avoiding/reducing bleeding risk. We present the design of a group of sulfated benzofuran dimers that display heparin-binding site-dependent partial allosteric inhibition of thrombin against fibrinogen (ΔY = 55-75%), the first time that a small molecule (MW < 800) has been found to thwart macromolecular cleavage by a monomeric protease in a controlled manner.
View Article and Find Full Text PDFAlthough plasmin inhibitors could be used in multiple disorders, their use has been restricted to preventing blood loss in hemostatic dysregulation because of poor efficacy and adverse effects of current agents. We reasoned that a new class of direct inhibitors that offer better efficacy, selectivity, and safety could be discovered by exploiting allosterism in plasmin, a protease homologous to other allosteric serine proteases. We report on the synthesis, biological activity, and mechanism of action of a group of small molecules, called non-saccharide glycosaminoglycan mimetics (NSGMs), as direct allosteric plasmin inhibitors.
View Article and Find Full Text PDFHigh mobility group box 1 (HMGB1) is an alarmin released from macrophages after infection or inflammation and is a biomarker of lung disease progression in patients with cystic fibrosis. We reported that 2-O, 3-O desulfated heparin (ODSH) inhibits the release of HMGB1 from murine macrophages triggered by neutrophil elastase both in vivo and in vitro. HMGB1 shuttles between the nucleus and the cytoplasm.
View Article and Find Full Text PDFFactor XIIIa (FXIIIa) is a transglutaminase that catalyzes the last step in the coagulation process. Orthostery is the only approach that has been exploited to design FXIIIa inhibitors. Yet, allosteric inhibition of FXIIIa is a paradigm that may offer a key advantage of controlled inhibition over orthosteric inhibition.
View Article and Find Full Text PDF