Publications by authors named "Daniel Jose Barbosa"

Paraquat (1,1'-dimethyl-4,4'-bipyridilium dichloride), a widely used bipyridinium herbicide, is known for inducing oxidative stress, leading to extensive cellular toxicity, particularly in the lungs, liver, kidneys, and central nervous system (CNS), and is implicated in fatal poisonings. Due to its biochemical similarities with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), paraquat has been used as a Parkinson's disease model, although its broader neurotoxic effects suggest the participation of multiple mechanisms. Demyelinating diseases are conditions characterized by damage to the myelin sheath of neurons.

View Article and Find Full Text PDF
Article Synopsis
  • * Kinesins facilitate the forward transport along microtubules, while dyneins are responsible for moving materials back towards the cell body; myosins operate on actin filaments.
  • * Disruptions in the function of these molecular motors have been linked to various brain disorders, including multiple sclerosis, where ineffective transport impacts myelination and can lead to neuronal degeneration.
View Article and Find Full Text PDF

CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins) systems are adaptive immune systems originally present in bacteria, where they are essential to protect against external genetic elements, including viruses and plasmids. Taking advantage of this system, CRISPR-Cas-based technologies have emerged as incredible tools for precise genome editing, thus significantly advancing several research fields. Forensic sciences represent a multidisciplinary field that explores scientific methods to investigate and resolve legal issues, particularly criminal investigations and subject identification.

View Article and Find Full Text PDF
Article Synopsis
  • * Folate is vital for cell division and neurodevelopment, with deficiencies linked to serious health issues such as cancer, birth defects, and neurodegenerative diseases.
  • * The therapeutic use of folate-related strategies in cancer treatment and neurodegenerative disease shows promise but is complicated by varying impacts across different contexts and conditions.
View Article and Find Full Text PDF

Substituted phenethylamines including 2C (2,5-dimethoxyphenethylamines) and NBOMe (-(2-methoxybenzyl)phenethylamines) drugs are potent psychoactive substances with little to no knowledge available on their toxicity. In the present in vitro study, we explored the mechanisms underlying the neurotoxicity of six substituted phenethylamines: 2C-T-2, 2C-T-4, 2C-T-7 and their corresponding NBOMes. These drugs were synthesized and chemically characterized, and their cytotoxicity (0-1000 μM) was evaluated in differentiated SH-SY5Y cells and primary rat cortical cultures, by the NR uptake and MTT reduction assays.

View Article and Find Full Text PDF
Article Synopsis
  • The blood-brain barrier (BBB) protects the brain by preventing toxic substances from the bloodstream while allowing essential nutrients to pass through, presenting challenges for drug testing and toxicity assessments.
  • Current research focuses on improving in vitro models of the BBB, which can be complex due to specific cellular features that restrict how substances move through.
  • The study reviews various in vitro approaches, emphasizing the shift from simple cell layers to more advanced multicellular models that better mimic the brain’s environment, critical for understanding neurodegenerative diseases and drug permeability.
View Article and Find Full Text PDF

Antimitotic compounds, targeting key spindle assembly checkpoint (SAC) components (e.g., MPS1, Aurora kinase B, PLK1, KLP1, CENPE), are potential alternatives to microtubule-targeting antimitotic agents (e.

View Article and Find Full Text PDF

The relevance of microbiological examinations has been controversial for decades, but the boom in advanced sequencing techniques over the last decade is increasingly demonstrating their usefulness, namely for the estimation of the interval. This comprehensive review aims to present the current knowledge about the human microbiome (the necrobiome), highlighting the main factors influencing this complex process and discussing the principal applications in the field of forensic sciences. Several limitations still hindering the implementation of forensic microbiology, such as small-scale studies, the lack of a universal/harmonized workflow for DNA extraction and sequencing technology, variability in the human microbiome, and limited access to human cadavers, are discussed.

View Article and Find Full Text PDF

Ferroptosis is a type of regulated cell death promoted by the appearance of oxidative perturbations in the intracellular microenvironment constitutively controlled by glutathione peroxidase 4 (GPX4). It is characterized by increased production of reactive oxygen species, intracellular iron accumulation, lipid peroxidation, inhibition of system Xc-, glutathione depletion, and decreased GPX4 activity. Several pieces of evidence support the involvement of ferroptosis in distinct neurodegenerative diseases.

View Article and Find Full Text PDF

Ferroptosis is a type of regulated cell death characterized by intracellular accumulation of iron and reactive oxygen species, inhibition of system Xc-, glutathione depletion, nicotinamide adenine dinucleotide phosphate oxidation and lipid peroxidation. Since its discovery and characterization in 2012, many efforts have been made to reveal the underlying mechanisms, modulating compounds, and its involvement in disease pathways. Ferroptosis inducers include erastin, sorafenib, sulfasalazine and glutamate, which, by inhibiting system Xc-, prevent the import of cysteine into the cells.

View Article and Find Full Text PDF

3,4-Methylenedioximethamphetamine (MDMA; "ecstasy") is a psychotropic drug with well-known neurotoxic effects mediated by hitherto not fully understood mechanisms. The Na- and K-activated adenosine 5'-triphosphatase (Na/K ATPase), by maintaining the ion gradient across the cell membrane, regulates neuronal excitability. Thus, a perturbation of its function strongly impacts cell homeostasis, ultimately leading to neuronal dysfunction and death.

View Article and Find Full Text PDF

ABC (ATP-binding cassette) transporters represent one of the largest and most diverse superfamily of proteins in living species, playing an important role in many biological processes such as cell homeostasis, cell signaling, drug metabolism and nutrient uptake. Moreover, using the energy generated from ATP hydrolysis, they mediate the efflux of endogenous and exogenous substrates from inside the cells, thereby reducing their intracellular accumulation. At present, 48 ABC transporters have been identified in humans, which were classified into 7 different subfamilies (A to G) according to their phylogenetic analysis.

View Article and Find Full Text PDF

Amphetamines are a class of psychotropic drugs with high abuse potential, as a result of their stimulant, euphoric, emphathogenic, entactogenic, and hallucinogenic properties. Although most amphetamines are synthetic drugs, of which methamphetamine, amphetamine, and 3,4-methylenedioxymethamphetamine ("ecstasy") represent well-recognized examples, the use of natural related compounds, namely cathinone and ephedrine, has been part of the history of humankind for thousands of years. Resulting from their amphiphilic nature, these drugs can easily cross the blood-brain barrier and elicit their well-known psychotropic effects.

View Article and Find Full Text PDF

Paraquat (PQ) is an extremely toxic herbicide upon oral ingestion that lacks a specific antidote. In case of intoxication, treatment primarily relies on limiting its intestinal absorption. In this study, we elucidate the intestinal transport mechanisms of PQ uptake using Caco-2 cells as a model of the human intestinal epithelium.

View Article and Find Full Text PDF

The induction of P-glycoprotein (P-gp), an ATP-dependent efflux pump, has been proposed as a strategy against the toxicity induced by P-gp substrates such as the herbicide paraquat (PQ). The aim of this study was to screen five newly synthetized thioxanthonic derivatives, a group known to interact with P-gp, as potential inducers of the pump's expression and/or activity and to evaluate whether they would afford protection against PQ-induced toxicity in Caco-2 cells. All five thioxanthones (20 µM) caused a significant increase in both P-gp expression and activity as evaluated by flow cytometry using the UIC2 antibody and rhodamine 123, respectively.

View Article and Find Full Text PDF

Abuse of synthetic drugs is widespread among young people worldwide. In this context, piperazine derived drugs recently appeared in the recreational drug market. Clinical studies and case-reports describe sympathomimetic effects including hypertension, tachycardia, and increased heart rate.

View Article and Find Full Text PDF

Colchicine is a P-glycoprotein (P-gp) substrate that induces its expression, thus increasing the risk for unexpected pharmacokinetic interactions with this drug. Because increased P-gp expression does not always correlate with increased activity of this efflux pump, we evaluated the changes in both P-gp expression and activity induced by colchicine using an in vitro model. Caco-2 cells were incubated with 0.

View Article and Find Full Text PDF

3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a potentially neurotoxic recreational drug of abuse. Though the mechanisms involved are still not completely understood, formation of reactive metabolites and mitochondrial dysfunction contribute to MDMA-related neurotoxicity. Neuronal mitochondrial trafficking, and their targeting to synapses, is essential for proper neuronal function and survival, rendering neurons particularly vulnerable to mitochondrial dysfunction.

View Article and Find Full Text PDF

Identification of the mechanisms by which drugs of abuse cause neuronal dysfunction is essential for understanding the biological bases of their acute and long-lasting effects in the brain. Here, we performed real-time functional experiments of axonal transport of mitochondria to explore the role of in situ mitochondrial dysfunction in 3,4-methylenedioxymethamphetamine (MDMA; "ecstasy")-related brain actions. We showed that MDMA dramatically reduced mitochondrial trafficking in hippocampal neurons in a Tau-dependent manner, in which glycogen synthase kinase 3β activity was implicated.

View Article and Find Full Text PDF

Xanthones are a family of compounds with several known biological activities and therapeutic potential for which information on their interaction with membrane transporters is lacking. Knowing that P-glycoprotein (P-gp) acts as a cellular defense mechanism by effluxing its toxic substrates, the aim of this study was to investigate the potential of five dihydroxylated xanthones as inducers of P-gp expression and/or activity and to evaluate whether they could protect Caco-2 cells against the cytotoxicity induced by the toxic P-gp substrate paraquat (PQ). After 24 h of incubation, all tested xanthones caused a significant increase in both P-gp expression and activity, as evaluated by flow cytometry using the UIC2 antibody and rhodamine 123, respectively.

View Article and Find Full Text PDF

3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a recreational hallucinogenic drug of abuse known to elicit neurotoxic properties. Hepatic formation of neurotoxic metabolites is thought to play a major role in MDMA-related neurotoxicity, though the mechanisms involved are still unclear. Here, we studied the neurotoxicity mechanisms and stability of MDMA and 6 of its major human metabolites, namely α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) and their correspondent glutathione (GSH) and N-acetyl-cysteine (NAC) conjugates, under normothermic (37 °C) or hyperthermic conditions (40 °C), using cultured SH-SY5Y differentiated cells.

View Article and Find Full Text PDF

The neurotoxicity of "ecstasy" (3,4-methylenedioxymethamphetamine, MDMA) is thought to involve hepatic metabolism, though its real contribution is not completely understood. Most in vitro neurotoxicity studies concern isolated exposures of MDMA or its metabolites, at high concentrations, not considering their mixture, as expected in vivo. Therefore, our postulate is that combined deleterious effects of MDMA and its metabolites, at low micromolar concentrations that may be attained into the brain, may elicit neurotoxicity.

View Article and Find Full Text PDF

Background And Purpose: 3,4-Methylenedioxymethamphetamine (MDMA or 'Ecstasy') is a worldwide major drug of abuse known to elicit neurotoxic effects. The mechanisms underlying the neurotoxic effects of MDMA are not clear at present, but the metabolism of dopamine and 5-HT by monoamine oxidase (MAO), as well as the hepatic biotransformation of MDMA into pro-oxidant reactive metabolites is thought to contribute to its adverse effects.

Experimental Approach: Using mouse brain synaptosomes, we evaluated the pro-oxidant effects of MDMA and its metabolites, α-methyldopamine (α-MeDA), N-methyl-α-methyldopamine (N-Me-α-MeDA) and 5-(glutathion-S-yl)-α-methyldopamine [5-(GSH)-α-MeDA], as well as those of 5-HT, dopamine, l-DOPA and 3,4-dihydroxyphenylacetic acid (DOPAC).

View Article and Find Full Text PDF