Publications by authors named "Daniel J van der Post"

Background: Advanced cognitive abilities are widely thought to underpin cultural traditions and cumulative cultural change. In contrast, recent simulation models have found that basic social influences on learning suffice to support both cultural phenomena. In the present study we test the predictions of these models in the context of skill learning, in a model with stochastic demographics, variable group sizes, and evolved parameter values, exploring the cultural ramifications of three different social learning mechanisms.

View Article and Find Full Text PDF

Background: Social learning is potentially advantageous, but evolutionary theory predicts that (i) its benefits may be self-limiting because social learning can lead to information parasitism, and (ii) these limitations can be mitigated via forms of selective copying. However, these findings arise from a functional approach in which learning mechanisms are not specified, and which assumes that social learning avoids the costs of asocial learning but does not produce information about the environment. Whether these findings generalize to all kinds of social learning remains to be established.

View Article and Find Full Text PDF

Different forms of sociality have evolved via unique evolutionary trajectories. However, it remains unknown to what extent trajectories of social evolution depend on the specific characteristics of different species. Our approach to studying such trajectories is to use evolutionary case-studies, so that we can investigate how grouping co-evolves with a multitude of individual characteristics.

View Article and Find Full Text PDF

In many animal species, vigilance is crucial for avoiding predation. In groups, however, nonvigilant individuals could benefit from the vigilance of others without any of the associated costs. In an evolutionary sense, such exploitation may be compensated if vigilant individuals have a survival advantage.

View Article and Find Full Text PDF

Background: Many animals live in groups. One proposed reason is that grouping allows cooperative food finding. Group foraging models suggest that grouping could increase food finding rates, but that such group processes could be evolutionarily unstable.

View Article and Find Full Text PDF

Information processing is a major aspect of the evolution of animal behavior. In foraging, responsiveness to local feeding opportunities can generate patterns of behavior which reflect or "recognize patterns" in the environment beyond the perception of individuals. Theory on the evolution of behavior generally neglects such opportunity-based adaptation.

View Article and Find Full Text PDF

The ubiquity of cooperation in nature is puzzling because cooperators can be exploited by defectors. Recent theoretical work shows that if dynamic networks define interactions between individuals, cooperation is favoured by natural selection. To address this, we compare cooperative behaviour in multiple but independent repeated games between participants in static and dynamic networks.

View Article and Find Full Text PDF

We study how learning is shaped by foraging opportunities and self-organizing processes and how this impacts on the effects of "copying what neighbors eat" on multiple timescales. We use an individual-based model with a rich environment, where group foragers learn what to eat. We vary foraging opportunities by changing local variation in resources, studying copying in environments with pure patches, varied patches, and uniform distributed resources.

View Article and Find Full Text PDF