Publications by authors named "Daniel J Wesche"

During development, cells progress from a pluripotent state to a more restricted fate within a particular germ layer. However, cranial neural crest cells (CNCCs), a transient cell population that generates most of the craniofacial skeleton, have much broader differentiation potential than their ectodermal lineage of origin. Here, we identify a neuroepithelial precursor population characterized by expression of canonical pluripotency transcription factors that gives rise to CNCCs and is essential for craniofacial development.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) is a powerful approach for reconstructing cellular differentiation trajectories. However, inferring both the state and direction of differentiation is challenging. Here, we demonstrate a simple, yet robust, determinant of developmental potential-the number of expressed genes per cell-and leverage this measure of transcriptional diversity to develop a computational framework (CytoTRACE) for predicting differentiation states from scRNA-seq data.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) self-renew and generate all blood cells. Recent studies with single cell transplants and lineage tracing suggest that adult HSCs are diverse in their reconstitution and lineage potentials. However, prospective isolation of these subpopulations has remained challenging.

View Article and Find Full Text PDF
Article Synopsis
  • The study identifies a population of hepatobiliary hybrid progenitor (HHyP) cells in human fetal liver, which are located in a specific area called the ductal plate.
  • HHyPs have a unique gene expression profile that sets them apart from mature hepatocytes and bile duct epithelial cells, indicating their distinct role in liver development.
  • The research supports the idea that similar progenitor cells found in mice also exist in humans, highlighting the potential for understanding liver tissue generation and repair mechanisms.
View Article and Find Full Text PDF

Cellular differentiation involves profound remodelling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNA interference (RNAi) screens targeting chromatin factors during transcription-factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPS cells). Subunits of the chromatin assembly factor-1 (CAF-1) complex, including Chaf1a and Chaf1b, emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance.

View Article and Find Full Text PDF

Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections, and comprise nearly 8% of the human genome. The most recently acquired human ERV is HERVK(HML-2), which repeatedly infected the primate lineage both before and after the divergence of the human and chimpanzee common ancestor. Unlike most other human ERVs, HERVK retained multiple copies of intact open reading frames encoding retroviral proteins.

View Article and Find Full Text PDF