Publications by authors named "Daniel J Steck"

The temporal variations of the airborne radon decay product dose rate and deposited radon decay product activities, as well as the within-house and house-to-house variations of radon concentrations, were evaluated through repeated field measurements. Long-term average radon and surface-deposited radon decay product concentrations were measured in 76 rooms of 38 houses. Temporal variation of radon, as well as airborne and surface-deposited radon decay products, were measured in 11 of the 38 houses during two different seasons.

View Article and Find Full Text PDF

This study investigated temporal and spatial variability between basement radon concentrations (measured for ∼7 d using electret ion chambers) and basement and upper floor radon concentrations (measured for 1 y using alpha track detectors) in 158 residences in Iowa, USA. Utility of short-term measurements to approximate a person's residential radon exposure and effect of housing/occupant factors on predictive ability were evaluated. About 60 % of basement short-term, 60 % of basement year-long and 30 % of upper floor year-long radon measurements were equal to or above the United States Environmental Protection Agency's radon action level of 148 Bq m Predictive value of a positive short-term test was 44 % given the year-long living space concentration was equal to or above this action level.

View Article and Find Full Text PDF

This study investigated radon concentrations in above-ground (i.e. first floor) workplace in Missouri and compared them with above-ground radon concentrations in nearby homes and outdoor locations.

View Article and Find Full Text PDF

The primary objective of this study was to investigate the temporal variability between basement winter short-term (7 to 10 d) and basement annual radon measurements. Other objectives were to test the short-term measurement's diagnostic performance at two reference levels and to evaluate its ability to predict annual average basement radon concentrations. Electret ion chamber (short-term) and alpha track (annual) radon measurements were obtained by trained personnel in Iowa residences.

View Article and Find Full Text PDF

Increased lung cancer incidence has been linked with long-term exposure to elevated residential radon. Experimental studies have shown that soil ventilation can be effective in reducing radon concentrations in single-family homes. Most radon mitigation systems in the U.

View Article and Find Full Text PDF

The quantitative relationships between radon gas concentration, the surface-deposited activities of various radon progeny, the airborne radon progeny dose rate, and various residential environmental factors were investigated through a Monte Carlo simulation study based on the extended Jacobi room model. Airborne dose rates were calculated from the unattached and attached potential alpha-energy concentrations (PAECs) using two dosimetric models. Surface-deposited (218)Po and (214)Po were significantly correlated with radon concentration, PAECs, and airborne dose rate (p-values <0.

View Article and Find Full Text PDF

The quantitative relationships between radon gas concentration, the surface-deposited activities of various radon progeny, the airborne radon progeny dose rate, and various residential environmental factors were investigated through actual field measurements in 38 selected Iowa houses occupied by either smokers or nonsmokers. Airborne dose rate was calculated from unattached and attached potential alpha energy concentrations (PAECs) using two dosimetric models with different activity-size weighting factors. These models are labeled Pdose and Jdose, respectively.

View Article and Find Full Text PDF

It is well known that inhalation of 222Rn and 222Rn decay products increases the risk of lung cancer. While the occurrences of high radon areas in the United States are generally known, studies examining the temporal yearly radon variation in homes across different regions are lacking. This information is essential to assess the ability of a year-long radon measurement to predict the future radon concentration in a home or reconstruct the retrospective residential radon concentration.

View Article and Find Full Text PDF

Radon concentration alone may not be an adequate surrogate to measure for lung cancer risk in all residential radon epidemiologic lung cancer studies. The dose delivered to the lungs per unit radon exposure can vary significantly with exposure conditions. These dose-effectiveness variations can be comparable to spatial and temporal factor variations in many situations.

View Article and Find Full Text PDF

Lung cancer has held the distinction as the most common cancer type worldwide since 1985 (Parkin et al., 1993). Recent estimates suggest that lung cancer accounted for 1.

View Article and Find Full Text PDF

Cohort studies have consistently shown underground miners exposed to high levels of radon to be at excess risk of lung cancer, and extrapolations based on those results indicate that residential radon may be responsible for nearly 10-15% of all lung cancer deaths per year in the United States. However, case-control studies of residential radon and lung cancer have provided ambiguous evidence of radon lung cancer risks. Regardless, alpha-particle emissions from the short-lived radioactive radon decay products can damage cellular DNA.

View Article and Find Full Text PDF

Background: Underground miners exposed to high levels of radon have an excess risk of lung cancer. Residential exposure to radon is at much lower levels, and the risk of lung cancer with residential exposure is less clear. We conducted a systematic analysis of pooled data from all North American residential radon studies.

View Article and Find Full Text PDF

The most direct way to derive risk estimates for residential radon progeny exposure is through epidemiologic studies that examine the association between residential radon exposure and lung cancer. However, the National Research Council concluded that the inconsistency among prior residential radon case-control studies was largely a consequence of errors in radon dosimetry. This paper examines the impact of applying various epidemiologic dosimetry models for radon exposure assessment using a common data set from the Iowa Radon Lung Cancer Study (IRLCS).

View Article and Find Full Text PDF