Publications by authors named "Daniel J Salamango"

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak took the world by storm due to its rapid global spread and unpredictable disease outcomes. The extraordinary ascension of SARS-CoV-2 to pandemic status motivated a world-wide effort to rapidly develop vaccines that could effectively suppress virus spread and mitigate severe disease. These efforts culminated in the development and deployment of several highly effective vaccines that were heralded as the beginning-of-the-end of the pandemic.

View Article and Find Full Text PDF

The single-stranded DNA cytosine-to-uracil deaminase APOBEC3B is an antiviral protein implicated in cancer. However, its substrates in cells are not fully delineated. Here APOBEC3B proteomics reveal interactions with a surprising number of R-loop factors.

View Article and Find Full Text PDF

Precision genome editing has become a reality with the discovery of base editors. Cytosine base editor (CBE) technologies are improving rapidly but are mostly optimized for T dinucleotide targets. Here, we report the development and implementation of APOBEC Reporter Systems for Evaluating diNucleotide Editing Levels (ARSENEL) in living cells.

View Article and Find Full Text PDF

Emerging evidence indicates that HIV-1 hijacks host DNA damage repair (DDR) pathways to facilitate multiple facets of virus replication. Canonically, HIV-1 engages proviral DDR responses through the accessory protein Vpr, which induces constitutive activation of DDR kinases ATM and ATR. However, in response to prolonged DDR signaling, ATM directly induces pro-inflammatory NF-κB signaling and activates multiple members of the TRIM family of antiviral restriction factors, several of which have been previously implicated in antagonizing retroviral and lentiviral replication.

View Article and Find Full Text PDF

Powassan virus (POWV) is an emerging tick-borne Flavivirus that causes lethal encephalitis and long-term neurologic damage. Currently, there are no POWV therapeutics, licensed vaccines, or reverse genetics systems for producing infectious POWVs from recombinant DNA. Using a circular polymerase extension reaction (CPER), we generated recombinant LI9 (recLI9) POWVs with attenuating NS1 protein mutations and a recLI9-split-eGFP reporter virus.

View Article and Find Full Text PDF

APOBEC3B is an innate immune effector enzyme capable of introducing mutations in viral genomes through DNA cytosine-to-uracil editing. Recent studies have shown that gamma-herpesviruses, such as Epstein-Barr virus (EBV), have evolved a potent APOBEC3B neutralization mechanism to protect lytic viral DNA replication intermediates in the nuclear compartment. APOBEC3B is additionally unique as the only human DNA deaminase family member that is constitutively nuclear.

View Article and Find Full Text PDF

The canonical function of lentiviral Vif proteins is to counteract the mutagenic potential of APOBEC3 antiviral restriction factors. However, recent studies have discovered that Vif proteins from diverse HIV-1 and simian immunodeficiency virus (SIV) isolates degrade cellular B56 phosphoregulators to remodel the host phosphoproteome and induce G2/M cell cycle arrest. Here, we evaluate the conservation of this activity among non-primate lentiviral Vif proteins using fluorescence-based degradation assays and demonstrate that maedi-visna virus (MVV) Vif efficiently degrades all five B56 family members.

View Article and Find Full Text PDF

Like many pathogenic viruses, SARS-CoV-2 must overcome interferon (IFN)-mediated host defenses for infection establishment. To achieve this, SARS-CoV-2 deploys overlapping mechanisms to antagonize IFN production and signaling. The strongest IFN antagonist is the accessory protein ORF6, which localizes to multiple membranous compartments, including the nuclear envelope, where it directly binds nuclear pore component Nup98-Rae1 to inhibit nuclear translocation of activated STAT1 and IRF3 transcription factors.

View Article and Find Full Text PDF

Activation-induced deaminase (AID) not only mutates DNA within the immunoglobulin loci to generate antibody diversity, but it also promotes development of B cell lymphomas. To tame this mutagen, we performed a quantitative high-throughput screen of over 90 000 compounds to see if AID activity could be mitigated. The enzymatic activity was assessed in biochemical assays to detect cytosine deamination and in cellular assays to measure class switch recombination.

View Article and Find Full Text PDF

Accessory proteins are a key feature that distinguishes primate immunodeficiency viruses such as human immunodeficiency virus type I (HIV-1) from other retroviruses. A prime example is the virion infectivity factor, Vif, which hijacks a cellular co-transcription factor (CBF-β) to recruit a ubiquitin ligase complex (CRL5) to bind and degrade antiviral APOBEC3 enzymes including APOBEC3D (A3D), APOBEC3F (A3F), APOBEC3G (A3G), and APOBEC3H (A3H). Although APOBEC3 antagonism is essential for viral pathogenesis, and a more than sufficient functional justification for Vif's evolution, most viral proteins have evolved multiple functions.

View Article and Find Full Text PDF

Although APOBEC3 degradation is the canonical function of HIV-1 Vif, this viral protein also induces potent cell cycle arrest through a newly defined mechanism. Here, we review recent advances in this area and propose that the scope of this activity may go beyond subversion of the host cell cycle.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1) Vif recruits a cellular ubiquitin ligase complex to degrade antiviral APOBEC3 enzymes (APOBEC3C-H) and PP2A phosphatase regulators (PPP2R5A to PPP2R5E). While APOBEC3 antagonism is the canonical function of HIV-1 Vif, this viral accessory protein is also known to trigger G/M cell cycle arrest. Vif initiates G/M arrest by degrading multiple PPP2R5 family members, an activity prevalent among diverse HIV-1 and simian immunodeficiency virus (SIV) isolates.

View Article and Find Full Text PDF

Integration of the reverse-transcribed viral DNA into host chromosomes is a critical step in the life-cycle of retroviruses, including an oncogenic delta(δ)-retrovirus human T-cell leukemia virus type-1 (HTLV-1). Retroviral integrase forms a higher order nucleoprotein assembly (intasome) to catalyze the integration reaction, in which the roles of host factors remain poorly understood. Here, we use cryo-electron microscopy to visualize the HTLV-1 intasome at 3.

View Article and Find Full Text PDF

The plasma membrane (PM) provides a critical interface between plant cells and their environment to control cellular responses. To perceive the bacterial flagellin peptide flg22 for effective defense signaling, the immune receptor FLAGELLIN SENSING2 (FLS2) needs to be at its site of function, the PM, in the correct abundance. However, the intracellular machinery that controls PM accumulation of FLS2 remains largely undefined.

View Article and Find Full Text PDF

Although CRISPR/Cas9 technology has created a renaissance in genome engineering, particularly for gene knockout generation, methods to introduce precise single base changes are also highly desirable. The covalent fusion of a DNA-editing enzyme such as APOBEC to a Cas9 nickase complex has heightened hopes for such precision genome engineering. However, current cytosine base editors are prone to undesirable off-target mutations, including, most frequently, target-adjacent mutations.

View Article and Find Full Text PDF

HIV-1 Vif hijacks a cellular ubiquitin ligase complex to degrade antiviral APOBEC3 enzymes and PP2A phosphatase regulators (PPP2R5A-E). APOBEC3 counteraction is essential for viral pathogenesis. However, Vif also functions through an unknown mechanism to induce G2 cell cycle arrest.

View Article and Find Full Text PDF

As many as five members of the APOBEC3 family of DNA cytosine deaminases are capable of inhibiting HIV-1 replication by deaminating viral cDNA cytosines and interfering with reverse transcription. HIV-1 counteracts restriction with the virally encoded Vif protein, which forms a hybrid ubiquitin ligase complex that directly binds APOBEC3 enzymes and targets them for proteasomal degradation. APOBEC3H (A3H) is unique among family members by dimerization through cellular and viral duplex RNA species.

View Article and Find Full Text PDF

Human cells express up to 9 active DNA cytosine deaminases with functions in adaptive and innate immunity. Many cancers manifest an APOBEC mutation signature and APOBEC3B (A3B) is likely the main enzyme responsible. Although significant numbers of APOBEC signature mutations accumulate in tumor genomes, the majority of APOBEC-catalyzed uracil lesions are probably counteracted in an error-free manner by the uracil base excision repair pathway.

View Article and Find Full Text PDF

Apolipoprotein B mRNA editing enzyme catalytic subunit-like protein 3B (APOBEC3B or A3B), as other APOBEC3 members, is a single-stranded (ss)DNA cytosine deaminase with antiviral activity. A3B is also overexpressed in multiple tumor types, such as carcinomas of the bladder, cervix, lung, head/neck, and breast. A3B generates both dispersed and clustered C-to-T and C-to-G mutations in intrinsically preferred trinucleotide motifs (TA/TG/TT).

View Article and Find Full Text PDF

HIV-1 replication in CD4-positive T lymphocytes requires counteraction of multiple different innate antiviral mechanisms. Macrophage cells are also thought to provide a reservoir for HIV-1 replication but less is known in this cell type about virus restriction and counteraction mechanisms. Many studies have combined to demonstrate roles for APOBEC3D, APOBEC3F, APOBEC3G and APOBEC3H in HIV-1 restriction and mutation in CD4-positive T lymphocytes, whereas the APOBEC enzymes involved in HIV-1 restriction in macrophages have yet to be delineated fully.

View Article and Find Full Text PDF

Human APOBEC3H (A3H) is a single-stranded DNA cytosine deaminase that inhibits HIV-1. Seven haplotypes (I-VII) and four splice variants (SV154/182/183/200) with differing antiviral activities and geographic distributions have been described, but the genetic and mechanistic basis for variant expression and function remains unclear. Using a combined bioinformatic/experimental analysis, we find that SV200 expression is specific to haplotype II, which is primarily found in sub-Saharan Africa.

View Article and Find Full Text PDF

APOBEC enzymes are DNA cytosine deaminases that normally serve as virus restriction factors, but several members, including APOBEC3H, also contribute to cancer mutagenesis. Despite their importance in multiple fields, little is known about cellular processes that regulate these DNA mutating enzymes. We show that APOBEC3H exists in two distinct subcellular compartments, cytoplasm and nucleolus, and that the structural determinants for each mechanism are genetically separable.

View Article and Find Full Text PDF

The APOBEC3 family of cytosine deaminases catalyzes the conversion of cytosines-to-uracils in single-stranded DNA. Traditionally, these enzymes are associated with antiviral immunity and restriction of DNA-based pathogens. However, a role for these enzymes in tumor evolution and metastatic disease has also become evident.

View Article and Find Full Text PDF

APOBEC-catalyzed cytosine-to-uracil deamination of single-stranded DNA (ssDNA) has beneficial functions in immunity and detrimental effects in cancer. APOBEC enzymes have intrinsic dinucleotide specificities that impart hallmark mutation signatures. Although numerous structures have been solved, mechanisms for global ssDNA recognition and local target-sequence selection remain unclear.

View Article and Find Full Text PDF

Unlabelled: Enveloped viruses utilize transmembrane surface glycoproteins to gain entry into target cells. Glycoproteins from diverse viral families can be incorporated into nonnative viral particles in a process termed pseudotyping; however, the molecular mechanisms governing acquisition of these glycoproteins are poorly understood. For murine leukemia virus envelope (MLV Env) glycoprotein, incorporation into foreign viral particles has been shown to be an active process, but it does not appear to be caused by direct interactions among viral proteins.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: