Publications by authors named "Daniel J Rohrbach"

We investigated the change in optical properties and vascular parameters to characterize skin tissue from mild photodamage to actinic keratosis (AK) with comparison to a published photodamage scale. Multi-wavelength spatial frequency domain imaging (SFDI) measurements were performed on the dorsal forearms of 55 adult subjects with various amounts of photodamage. Dermatologists rated the levels of photodamage based upon the photographs in blinded fashion to allow comparison with SFDI data.

View Article and Find Full Text PDF

Early knowledge about burn severity and depth can lead to improved outcome for patients. In this study, we investigated the change in optical properties in ex vivo human skin following thermal burn injuries. Human skin removed during body contouring procedures was subjected to thermal burn injury for either 10 or 60 s.

View Article and Find Full Text PDF

Doxorubicin (Dox) is approved for use in liposomal form for the treatment of ovarian cancer. We previously developed a long-circulating Dox formulation in liposomes containing small amounts of porphyrin-phospholipid, which enables on-demand drug release with near-infrared irradiation. In this study, we present and evaluate a dual-modal, dual-channel light endoscope that allows quantitative reflectance and fluorescence imaging for monitoring of local Dox concentrations in target areas.

View Article and Find Full Text PDF

Near-infrared diffuse correlation spectroscopy (DCS) is used to record spontaneous cerebral blood flow fluctuations in the frontal cortex. Nine adult subjects participated in the experiments, in which 8-minute spontaneous fluctuations were simultaneously recorded from the left and right dorsolateral and inferior frontal regions. Resting-state functional connectivity (RSFC) was measured by the temporal correlation of the low frequency fluctuations.

View Article and Find Full Text PDF

For prevention and accurate intervention planning, it is crucial to predict if lesions will progress towards cancer. In this study, we investigated the change in optical properties and vascular parameters to characterize skin tissue from mild photodamage to actinic keratosis (AK). Multi-wavelength spatial frequency domain imaging (SFDI) measurements were performed on three patients with clinically normal skin, as well as pre-cancerous actinic keratosis lesions.

View Article and Find Full Text PDF

Background: Bronchoscopic procedures have been increasingly used for the diagnosis of peripheral lung cancers, but the yield remains moderately low. The aim of this study is to assess the feasibility and ability of a custom-built bimodal optical spectroscopy system to enhance the on-site discrimination between malignant and benign specimens obtained from the transbronchial lung biopsies (TBLB) of peripheral lung lesions.

Methods: We conducted a prospective and single-center pilot study to examine the TBLB specimens obtained from peripheral lung lesions.

View Article and Find Full Text PDF

This study investigated whether diffuse optical spectroscopy (DOS) measurements could assess clinical response to photodynamic therapy (PDT) in patients with head and neck squamous cell carcinoma (HNSCC). In addition, the correlation between parameters measured with DOS and the crosslinking of signal transducer and activator of transcription 3 (STAT3), a molecular marker for PDT-induced photoreaction, was investigated. Thirteen patients with early stage HNSCC received the photosensitizer 2-[1-hexyloxyethyl]-2-devinylpyropheophorbide-a (HPPH) and DOS measurements were performed before and after PDT in the operating room (OR).

View Article and Find Full Text PDF

The efficacy of chemotherapy is related, in large part, to the concentration of drug that reaches tumor sites. Doxorubicin (DOX) is a common anti-cancer drug that is also approved for use in liposomal form for the treatment of ovarian cancer. We recently developed a porphyrin-phospholipid (PoP)-liposome system that enables on demand release of DOX from liposomes using near infrared irradiation to improve DOX bioavailability.

View Article and Find Full Text PDF

The dosimetry of light-based therapies critically depends on both optical and vascular parameters. We utilized spatial frequency domain imaging to quantify optical and vascular parameters, as well as estimated light penetration depth from 17 nonmelanoma skin cancer patients. Our data indicates that there exist substantial spatial variations in these parameters.

View Article and Find Full Text PDF

Background: Topical photodynamic therapy (PDT) for selected nonmelanoma skin cancer using 5-aminolevulinic acid (ALA) or methyl aminolevulinate (MAL) has yielded high long-term complete response rates with very good cosmesis. Pain during light activation of the photosensitizer can be a serious adverse event. A 2-step irradiance protocol has previously been shown to minimize ALA-PDT pain.

View Article and Find Full Text PDF

Rationale And Objectives: The treatment of nonmelanoma skin cancer (NMSC) is usually by surgical excision or Mohs micrographic surgery and alternatively may include photodynamic therapy (PDT). To guide surgery and to optimize PDT, information about the tumor structure, optical parameters, and vasculature is desired.

Materials And Methods: Spatial frequency domain imaging (SFDI) can map optical absorption, scattering, and fluorescence parameters that can enhance tumor contrast and quantify light and photosensitizer dose.

View Article and Find Full Text PDF

Purpose: The primary objective was to evaluate safety of 3-(1'-hexyloxyethyl)pyropheophorbide-a (HPPH) photodynamic therapy (HPPH-PDT) for dysplasia and early squamous cell carcinoma of the head and neck (HNSCC). Secondary objectives were the assessment of treatment response and reporters for an effective PDT reaction.

Experimental Design: Patients with histologically proven oral dysplasia, carcinoma in situ, or early-stage HNSCC were enrolled in two sequentially conducted dose escalation studies with an expanded cohort at the highest dose level.

View Article and Find Full Text PDF

5-aminolaevulinic acid photodynamic therapy (ALA-PDT) is an attractive treatment option for nonmelanoma skin tumors, especially for multiple lesions and large areas. The efficacy of ALA-PDT is highly dependent on the photosensitizer (PS) concentration present in the tumor. Thus it is desirable to quantify PS concentration and distribution, preferably noninvasively to determine potential outcome.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) efficacy depends on the local dose deposited in the lesion as well as oxygen availability in the lesion. We report significant interlesion differences between two patients with oral lesions treated with the same drug dose and similar light dose of 2-1[hexyloxyethyl]-2-devinylpyropheophorbide-a (HPPH)-mediated photodynamic therapy (PDT). Pre-PDT and PDT-induced changes in hemodynamic parameters and HPPH photosensitizer content, quantified by diffuse optical methods, demonstrated substantial differences between the two lesions.

View Article and Find Full Text PDF