Publications by authors named "Daniel J Rinella"

Understanding the ecological niche of some fishes is complicated by their frequent use of a broad range of food resources and habitats across space and time. Little is known about Broad Whitefish (Coregonus nasus) ecological niches in Arctic landscapes even though they are an important subsistence species for Alaska's Indigenous communities. We investigated the foraging ecology and habitat use of Broad Whitefish via stable isotope analyses of muscle and liver tissue and otoliths from mature fish migrating in the Colville River within Arctic Alaska.

View Article and Find Full Text PDF

Conservation of Arctic fish species is challenging partly due to our limited ability to track fish through time and space, which constrains our understanding of life history diversity and lifelong habitat use. Broad Whitefish (Coregonus nasus) is an important subsistence species for Alaska's Arctic Indigenous communities, yet little is known about life history diversity, migration patterns, and freshwater habitat use. Using laser ablation Sr isotope otolith microchemistry, we analyzed Colville River Broad Whitefish 87Sr/86Sr chronologies (n = 61) to reconstruct movements and habitat use across the lives of individual fish.

View Article and Find Full Text PDF

The ecosystems supporting Pacific salmon (Oncorhynchus spp.) are changing rapidly as a result of climate change and habitat alteration. Understanding how-and how consistently-salmon populations respond to changes at regional and watershed scales has major implications for fisheries management and habitat conservation.

View Article and Find Full Text PDF

An integrated dataset was developed that combined stakeholder perceptions of environmental change (precipitation, air temperature, water temperature, fish abundance, fish size, residential development) and comparable instrumented measures of environmental changes based on sensor records. All data were transformed to a common 3-point categorical scale to support statistical comparison of social and biophysical change for the same change variables. The integrated dataset is available on Mendeley (http://dx.

View Article and Find Full Text PDF

Climate change is predicted to dramatically change hydrologic processes across Alaska, but estimates of how these impacts will influence specific watersheds and aquatic species are lacking. Here, we linked climate, hydrology, and habitat models within a coho salmon (Oncorhynchus kisutch) population model to assess how projected climate change could affect survival at each freshwater life stage and, in turn, production of coho salmon smolts in three subwatersheds of the Chuitna (Chuit) River watershed, Alaska. Based on future climate scenarios and projections from a three-dimensional hydrology model, we simulated coho smolt production over a 20-year span at the end of the century (2080-2100).

View Article and Find Full Text PDF