Publications by authors named "Daniel J Read"

Mucoadhesion is a special case of bioadhesion in which a material adheres to soft mucosal tissues. This review elucidates our current understanding of mucoadhesion across length, time, and energy scales by focusing on relevant structural features of mucus. We highlight the importance of both covalent and non-covalent interactions that can be tailored to maximize mucoadhesive interactions, particularly concerning proteinaceous mucoadhesives, which have been explored only to a limited extent so far in the literature.

View Article and Find Full Text PDF

Myosin 5a (Myo5a) is a dimeric processive motor protein that transports cellular cargos along filamentous actin (F-actin). Its long lever is responsible for its large power-stroke, step size, and load-bearing ability. Little is known about the levers' structure and physical properties, and how they contribute to walking mechanics.

View Article and Find Full Text PDF

Encouraging agricultural landowners to adopt conservation practices is crucial to enhancing ecosystem services in privately-owned farm landscapes. To improve engagement with landowners and increase adoption rates, much research has been dedicated to investigating how different psychological, social, economic, and political factors correlate with adoption. However, these studies largely measure adoption as a discrete, binary event.

View Article and Find Full Text PDF

Monitoring the governance and management effectiveness of area-based conservation has long been recognized as an important foundation for achieving national and global biodiversity goals and enabling adaptive management. However, there are still many barriers that prevent conservation actors, including those affected by governance and management systems from implementing conservation activities and programs and from gathering and using data on governance and management to inform decision-making across spatial scales and through time. We explored current and past efforts to assess governance and management effectiveness and barriers actors face in using the resulting data and insights to inform conservation decision-making.

View Article and Find Full Text PDF

Quasicrystals (materials with long-range order but without the usual spatial periodicity of crystals) were discovered in several soft matter systems in the last 20 years. The stability of quasicrystals has been attributed to the presence of two prominent length scales in a specific ratio, which is 1.93 for the 12-fold quasicrystals most commonly found in soft matter.

View Article and Find Full Text PDF

Although implementing conservation practices on private farms and forests can produce substantial environmental benefits, these practices are not being adopted widely enough to result in measurable improvements at regional scales. Researchers have investigated the production and program factors influencing producer choices to voluntarily adopt these practices. However, the findings of reviews are inconsistent, raising questions about review methods, including the omission of relevant variables.

View Article and Find Full Text PDF

Background: Outreach events such as trainings, demonstrations, and workshops are important opportunities for encouraging private land operators to adopt voluntary conservation practices. However, the ability to understand the effectiveness of such events at influencing conservation behavior is confounded by the likelihood that attendees are already interested in conservation and may already be adopters. Understanding characteristics of events that draw non-adopters can aid in designing events and messaging that are better able to reach beyond those already interested in conservation.

View Article and Find Full Text PDF

Two alternative routes are taken to derive, on the basis of the dynamics of a finite number of dumbbells, viscoelasticity in terms of a conformation tensor with fluctuations. The first route is a direct approach using stochastic calculus only, and it serves as a benchmark for the second route, which is guided by thermodynamic principles. In the latter, the Helmholtz free energy and a generalized relaxation tensor play a key role.

View Article and Find Full Text PDF

Assessing the structural properties of large proteins is important to gain an understanding of their function in, e.g., biological systems or biomedical applications.

View Article and Find Full Text PDF

Flagellar dyneins are the molecular motors responsible for producing the propagating bending motions of cilia and flagella. They are located within a densely packed and highly organised super-macromolecular cytoskeletal structure known as the axoneme. Using the mesoscale simulation technique Fluctuating Finite Element Analysis (FFEA), which represents proteins as viscoelastic continuum objects subject to explicit thermal noise, we have quantified the constraints on the range of molecular conformations that can be explored by dynein-c within the crowded architecture of the axoneme.

View Article and Find Full Text PDF

KOBRA (KirchOff Biological Rod Algorithm) is an algorithm and software package designed to perform dynamical simulations of elongated biomolecules such as those containing alpha-helices and coiled-coils. It represents these as coarsely-discretised Kirchoff rods, with linear elements that can stretch, bend and twist independently. These rods can have anisotropic and inhomogeneous parameters and bent or twisted equilibrium structures, allowing for a coarse-grained parameterisation of complex biological structures.

View Article and Find Full Text PDF

We develop a thermodynamic continuum-level model, polySTRAND, for flow-induced nucleation in polymers suitable for use in computational process modeling. The model's molecular origins ensure that it accounts properly for flow and nucleation dynamics of polydisperse systems and can be extended to include effects of exhaustion of highly deformed chains and nucleus roughness. It captures variations with the key processing parameters, flow rate, temperature, and molecular weight distribution.

View Article and Find Full Text PDF

Cytoplasmic dynein is responsible for intra-cellular transport in eukaryotic cells. Using Fluctuating Finite Element Analysis (FFEA), a novel algorithm that represents proteins as continuum viscoelastic solids subject to thermal noise, we are building computational tools to study the mechanics of these molecular machines. Here we present a methodology for obtaining the material parameters required to represent the flexibility of cytoplasmic dynein within FFEA from atomistic molecular dynamics (MD) simulations, and show that this continuum representation is sufficient to capture the principal dynamic properties of the motor.

View Article and Find Full Text PDF

The heliconical twist-bend nematic (N_{TB}) phase is a promising candidate for novel electro-optic and photonic applications. However, the phase generally exists at elevated temperatures and across a narrow temperature interval, limiting its implementation in device fabrication, which would ideally require the liquid crystal phase to be stable at room temperature. Here we report the formation of room-temperature N_{TB} phases by in situ photopolymerization.

View Article and Find Full Text PDF

Fluctuating Finite Element Analysis (FFEA) is a software package designed to perform continuum mechanics simulations of proteins and other globular macromolecules. It combines conventional finite element methods with stochastic thermal noise, and is appropriate for simulations of large proteins and protein complexes at the mesoscale (length-scales in the range of 5 nm to 1 μm), where there is currently a paucity of modelling tools. It requires 3D volumetric information as input, which can be low resolution structural information such as cryo-electron tomography (cryo-ET) maps or much higher resolution atomistic co-ordinates from which volumetric information can be extracted.

View Article and Find Full Text PDF

A detailed investigation of the thermal and dielectric properties of a series of binary mixtures exhibiting the nematic (N) and twist-bend nematic (N_{TB}) liquid crystal phases is presented. The mixtures consist of an achiral, dimeric liquid crystal CB7CB, which forms the nematic and twist-bend nematic phases, and a calamitic liquid crystal 5CB, which shows the nematic phase. As the concentration of the calamitic liquid crystal is increased, the transition temperatures decrease linearly, and the width of the nematic phase increases.

View Article and Find Full Text PDF

Univariate and multivariate relationships between perfectionistic self-presentation and reactions to impairment and disability following spinal cord injury were examined. A total of 144 adults with spinal cord injury ( M = 48.18 years old, SD = 15.

View Article and Find Full Text PDF

We have developed a continuum mechanical description of proteins using a finite element algorithm which has been generalized to include thermal fluctuations and which is therefore known as fluctuating finite element analysis (FFEA). Whereas conventional molecular dynamics (MD) simulations provide a trajectory in which each individual atomic position fluctuates, a FFEA trajectory shows how the overall shape of the protein changes due to thermal agitation. We describe the theoretical background to FFEA, its relationship to more established biomolecular modelling methods and provide examples of its application to the mesoscale biomolecular dynamics of the molecular motor dynein.

View Article and Find Full Text PDF

Despite huge advances in the computational techniques available for simulating biomolecules at the quantum-mechanical, atomistic and coarse-grained levels, there is still a widespread perception amongst the experimental community that these calculations are highly specialist and are not generally applicable by researchers outside the theoretical community. In this article, the successes and limitations of biomolecular simulation and the further developments that are likely in the near future are discussed. A brief overview is also provided of the experimental biophysical methods that are commonly used to probe biomolecular structure and dynamics, and the accuracy of the information that can be obtained from each is compared with that from modelling.

View Article and Find Full Text PDF

Advances in structural biology, such as cryo-electron microscopy (cryo-EM) have allowed for a number of sophisticated protein complexes to be characterized. However, often only a static snapshot of a protein complex is visualized despite the fact that conformational change is frequently inherent to biological function, as is the case for molecular motors. Computer simulations provide valuable insights into the different conformations available to a particular system that are not accessible using conventional structural techniques.

View Article and Find Full Text PDF

It has been a long held ambition of both industry and academia to understand the relationship between the often complex molecular architecture of polymer chains and their melt flow properties, with the goal of building robust theoretical models to predict their rheology. The established key to this is the use of well-defined, model polymers, homogeneous in chain length and architecture. We describe here for the first time, the in silico design, synthesis, and characterization of an architecturally complex, branched polymer with the optimal rheological properties for such structure-property correlation studies.

View Article and Find Full Text PDF

We present a predictive scheme connecting the topological structure of highly branched entangled polymers, with industrial-level complexity, to the emergent viscoelasticity of the polymer melt. The scheme is able to calculate the linear and nonlinear viscoelasticity of a stochastically branched "high-pressure free radical" polymer melt as a function of the chemical kinetics of its formation. The method combines numerical simulation of polymerization with the tube/entanglement physics of polymer dynamics extended to fully nonlinear response.

View Article and Find Full Text PDF

We study the onset of chain stretch and emergent extension hardening in the nonlinear rheological response of molten binary blends of long and short polymers. We predict that, upon dilution with short chains, the effective stretch relaxation time of the long chains initially increases in proportion to varphi_{L};{-alpha} (where varphi_{L} is the volume fraction of long chains and alpha is the dilution exponent for entanglements). We confirm this behavior experimentally, in a set of experiments that measure both the dilution exponent from linear rheology and the effective stretch relaxation time under extensional flow.

View Article and Find Full Text PDF

We present a simple reaction kinetics model to describe the polymer synthesis used by Lusignan et al. [Phys. Rev.

View Article and Find Full Text PDF