Subduction transports volatiles between Earth's mantle, crust, and atmosphere, ultimately creating a habitable Earth. We use isotopes to track carbon from subduction to outgassing along the Aleutian-Alaska Arc. We find substantial along-strike variations in the isotopic composition of volcanic gases, explained by different recycling efficiencies of subducting carbon to the atmosphere via arc volcanism and modulated by subduction character.
View Article and Find Full Text PDFVanguard efforts in forecasting volcanic eruptions are turning to physics-based models, which require quantitative estimates of magma conditions during pre-eruptive storage. Below active arc volcanoes, observed magma storage depths vary widely (~0 to 20 kilometers) and are commonly assumed to represent levels of neutral buoyancy. Here we show that geophysically observed magma depths (6 ± 3 kilometers) are greater than depths of neutral buoyancy, ruling out this commonly assumed control.
View Article and Find Full Text PDF