Publications by authors named "Daniel J Pack"

Varying indoor environmental conditions is known to affect office worker’s performance; wherein past research studies have reported the effects of unfavorable indoor temperature and air quality causing sick building syndrome (SBS) among office workers. Thus, investigating factors that can predict performance in changing indoor environments have become a highly important research topic bearing significant impact in our society. While past research studies have attempted to determine predictors for performance, they do not provide satisfactory prediction ability.

View Article and Find Full Text PDF

Understanding how indoor environment affects office worker's performance and developing methods to predict human performance in changing indoor environment have become highly important research topic bearing significant economic and sociological impact. While past research groups have attempted to find predictors for performance they do not provide satisfactory predictions. We conduct in this paper a study to predict human performance by developing a regression model using neurophysiological signals collected from electroencephalogram (EEG), during simulated office-work tasks under different indoor room temperatures (22°C and 30°C).

View Article and Find Full Text PDF

We consider the detection of the control or idle state in an asynchronous Steady-state visually evoked potential (SSVEP)-based brain computer interface system. We propose a likelihood ratio test using Canonical Correlation Analysis (CCA) scores calculated from the EEG measurements. The test exploits the state-specific distributions of CCA scores.

View Article and Find Full Text PDF

Compared with a single platform, cooperative autonomous unmanned aerial vehicles (UAVs) offer efficiency and robustness in performing complex tasks. Focusing on ground mobile targets that intermittently emit radio frequency signals, this paper presents a decentralized control architecture for multiple UAVs, equipped only with rudimentary sensors, to search, detect, and locate targets over large areas. The proposed architecture has in its core a decision logic which governs the state of operation for each UAV based on sensor readings and communicated data.

View Article and Find Full Text PDF

We describe a new approach to attacking the problem of robust computer vision for mobile robots. The overall strategy is to mimic the biological evolution of animal vision systems. Our basic imaging sensor is based upon the eye of the common house fly, Musca domestica.

View Article and Find Full Text PDF