The COVID-19 pandemic has emphasized the importance of accurate detection of known and emerging pathogens. However, robust characterization of pathogenic sequences remains an open challenge. To address this need we developed SeqScreen, which accurately characterizes short nucleotide sequences using taxonomic and functional labels and a customized set of curated Functions of Sequences of Concern (FunSoCs) specific to microbial pathogenesis.
View Article and Find Full Text PDFBackground: Ponds are important freshwater habitats that support both human and environmental activities. However, relative to their larger counterparts (e.g.
View Article and Find Full Text PDFThe use of irrigation water sourced from reclamation facilities and untreated surface water bodies may be a practical solution to attenuate the burden on diminishing groundwater aquifers. However, comprehensive microbial characterizations of these water sources are generally lacking, especially with regard to variations through time and across multiple water types. To address this knowledge gap we used a shotgun metagenomic approach to characterize the taxonomic and functional variations of microbial communities within two agricultural ponds, two freshwater creeks, two brackish rivers, and three water reclamation facilities located in the Mid-Atlantic, United States.
View Article and Find Full Text PDFObjective: Zero-valent iron sand filtration can remove multiple contaminants, including some types of pathogenic bacteria, from contaminated water. However, its efficacy at removing complex viral populations, such as those found in reclaimed water used for agricultural irrigation, has not been fully evaluated. Therefore, this study utilized metagenomic sequencing and epifluorescent microscopy to enumerate and characterize viral populations found in reclaimed water and zero-valent iron-sand filtered reclaimed water sampled three times during a larger greenhouse study.
View Article and Find Full Text PDFViral infection exerts selection pressure on marine microbes, as virus-induced cell lysis causes 20 to 50% of cell mortality, resulting in fluxes of biomass into oceanic dissolved organic matter. Archaeal and bacterial populations can defend against viral infection using the clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) system, which relies on specific matching between a spacer sequence and a viral gene. If a CRISPR spacer match to any gene within a viral genome is equally effective in preventing lysis, no viral genes should be preferentially matched by CRISPR spacers.
View Article and Find Full Text PDFShotgun metagenomics, which allows for broad sampling of viral diversity, has uncovered genes that are widely distributed among virioplankton populations and show linkages to important biological features of unknown viruses. Over 25% of known dsDNA phage carry the DNA polymerase I () gene, making it one of the most widely distributed phage genes. Because of its pivotal role in DNA replication, this enzyme is linked to phage lifecycle characteristics.
View Article and Find Full Text PDFIn order to determine the role of the database in taxonomic sequence classification, we examine the influence of the database over time on k-mer-based lowest common ancestor taxonomic classification. We present three major findings: the number of new species added to the NCBI RefSeq database greatly outpaces the number of new genera; as a result, more reads are classified with newer database versions, but fewer are classified at the species level; and Bayesian-based re-estimation mitigates this effect but struggles with novel genomes. These results suggest a need for new classification approaches specially adapted for large databases.
View Article and Find Full Text PDFAgricultural ponds have a great potential as a means of capture and storage of water for irrigation. However, pond topography (small size, shallow depth) leaves them susceptible to environmental, agricultural, and anthropogenic exposures that may influence microbial dynamics. Therefore, the aim of this project was to characterize the bacterial and viral communities of pond water in the Mid-Atlantic United States with a focus on the late season (October-December), where decreasing temperature and nutrient levels can affect the composition of microbial communities.
View Article and Find Full Text PDFCarbadox is a quinoxaline-di--oxide antibiotic fed to over 40% of young pigs in the United States that has been shown to induce phage DNA transduction ; however, the effects of carbadox on swine microbiome functions are poorly understood. We investigated the longitudinal effects of carbadox on swine gut microbial gene expression (fecal metatranscriptome) and phage population dynamics (fecal dsDNA viromes). Microbial metagenome, transcriptome, and virome sequences were annotated for taxonomic inference and gene function by using FIGfam (isofunctional homolog sequences) and SEED subsystems databases.
View Article and Find Full Text PDFChaperonins are protein-folding machinery found in all cellular life. Chaperonin genes have been documented within a few viruses, yet, surprisingly, analysis of metagenome sequence data indicated that chaperonin-carrying viruses are common and geographically widespread in marine ecosystems. Also unexpected was the discovery of viral chaperonin sequences related to thermosome proteins of archaea, indicating the presence of virioplankton populations infecting marine archaeal hosts.
View Article and Find Full Text PDFThe discovery of abundant viruses in the oceans and on land has ushered in a quarter century of groundbreaking advancements in our understanding of viruses within ecosystems. Two types of observations from environmental samples--direct counts of viral particles and viral metagenomic sequences--have been critical to these discoveries. Accurate direct counts have established ecosystem-scale trends in the impacts of viral infection on microbial host populations and have shown that viral communities within aquatic and soil environments respond to both short term and seasonal environmental change.
View Article and Find Full Text PDFVirioplankton play a crucial role in aquatic ecosystems as top-down regulators of bacterial populations and agents of horizontal gene transfer and nutrient cycling. However, the biology and ecology of virioplankton populations in the environment remain poorly understood. Ribonucleotide reductases (RNRs) are ancient enzymes that reduce ribonucleotides to deoxyribonucleotides and thus prime DNA synthesis.
View Article and Find Full Text PDFOne consistent finding among studies using shotgun metagenomics to analyze whole viral communities is that most viral sequences show no significant homology to known sequences. Thus, bioinformatic analyses based on sequence collections such as GenBank nr, which are largely comprised of sequences from known organisms, tend to ignore a majority of sequences within most shotgun viral metagenome libraries. Here we describe a bioinformatic pipeline, the Viral Informatics Resource for Metagenome Exploration (VIROME), that emphasizes the classification of viral metagenome sequences (predicted open-reading frames) based on homology search results against both known and environmental sequences.
View Article and Find Full Text PDF