Microtubule-associated protein tau is inextricably linked to a group of clinically diverse neurodegenerative diseases termed tauopathies. The ratio balance of the major tau splicing isoform groups (3 R- and 4 R-tau) is critical in maintaining healthy neurons. An imbalance causing excess 4 R tau is associated with diseases such as progressive supranuclear palsy and frontotemporal dementia.
View Article and Find Full Text PDFEbolavirus disease (EVD) is caused by multiple species of . Monoclonal antibodies (mAbs) against the virus glycoprotein (GP) are the only class of therapeutic approved for treatment of EVD caused by (EBOV). Therefore, mAbs targeting multiple species may represent the next generation of EVD therapeutics.
View Article and Find Full Text PDFAlthough new genomics-based pipelines have potential to augment antibody discovery, these methods remain in their infancy due to an incomplete understanding of the selection process that governs B cell clonal selection, expansion, and antigen specificity. Furthermore, it remains unknown how factors such as aging and reduction of tolerance influence B cell selection. Here we perform single-cell sequencing of antibody repertoires and transcriptomes of murine B cells following immunizations with a model therapeutic antigen target.
View Article and Find Full Text PDFThe capacity of humoral B cell-mediated immunity to effectively respond to and protect against pathogenic infections is largely driven by the presence of a diverse repertoire of polyclonal antibodies in the serum, which are produced by plasma cells (PCs). Recent studies have started to reveal the balance between deterministic mechanisms and stochasticity of antibody repertoires on a genotypic level (i.e.
View Article and Find Full Text PDFWe have recently described the development of a series of small-molecule inhibitors of human tumour necrosis factor (TNF) that stabilise an open, asymmetric, signalling-deficient form of the soluble TNF trimer. Here, we describe the generation, characterisation, and utility of a monoclonal antibody that selectively binds with high affinity to the asymmetric TNF trimer-small molecule complex. The antibody helps to define the molecular dynamics of the apo TNF trimer, reveals the mode of action and specificity of the small molecule inhibitors, acts as a chaperone in solving the human TNF-TNFR1 complex crystal structure, and facilitates the measurement of small molecule target occupancy in complex biological samples.
View Article and Find Full Text PDFThe primary goal of bioprocess cell line development is to obtain high product yields from robustly growing and well-defined clonal cell lines in timelines measured in weeks rather than months. Likewise, high-throughput screening of B cells and hybridomas is required for most cell line engineering workflows. A substantial bottleneck in these processes is detecting and isolating rare clonal cells with the required characteristics.
View Article and Find Full Text PDFWe describe therapeutic monoclonal antibodies isolated from human volunteers vaccinated with recombinant adenovirus expressing Ebola virus glycoprotein (EBOV GP) and boosted with modified vaccinia virus Ankara. Among 82 antibodies isolated from peripheral blood B cells, almost half neutralized GP pseudotyped influenza virus. The antibody response was diverse in gene usage and epitope recognition.
View Article and Find Full Text PDFSingle B cell screening strategies, which avoid both hybridoma fusion and combinatorial display, have emerged as important technologies for efficiently sampling the natural antibody repertoire of immunized animals and humans. Having access to a range of methods to interrogate different B cell subsets provides an attractive option to ensure large and diverse panels of high quality antibody are produced. The generation of multiple antibodies and having the ability to find rare B cell clones producing IgG with unique and desirable characteristics facilitates the identification of fit-for-purpose molecules that can be developed into therapeutic agents or research reagents.
View Article and Find Full Text PDFSingle B cell technologies, which avoid traditional hybridoma fusion and combinatorial display, provide a means to interrogate the naturally-selected antibody repertoire of immunized animals. Many methods enable the sampling of memory B cell subsets, but few allow for the direct interrogation of the plasma cell repertoire, i.e.
View Article and Find Full Text PDFClin Vaccine Immunol
March 2013
Clostridium difficile infections are a major cause of antibiotic-associated diarrhea in hospital and care facility patients. In spite of the availability of effective antibiotic treatments, C. difficile infection (CDI) is still a major cause of patient suffering, death, and substantial health care costs.
View Article and Find Full Text PDFThe development of bone-rebuilding anabolic agents for treating bone-related conditions has been a long-standing goal. Genetic studies in humans and mice have shown that the secreted protein sclerostin is a key negative regulator of bone formation. More recently, administration of sclerostin-neutralizing monoclonal antibodies in rodent studies has shown that pharmacologic inhibition of sclerostin results in increased bone formation, bone mass, and bone strength.
View Article and Find Full Text PDFWe describe a method for the generation of high-affinity monoclonal antibodies, which combines the power of natural immune responses with in vitro panning, B cell culture, RT-PCR and expression of the recombinant product. B cells from immunised rabbits were incubated at approximately 1000-10,000 cells per well with solid phase antigen coated on the surface of 96-well ELISA plates. Extensive washing removed non-binding cells as well as those B cells, which bound with low affinity.
View Article and Find Full Text PDF