Glycyl radical enzymes (GREs) represent a diverse superfamily of enzymes that utilize a radical mechanism to catalyze difficult, but often essential, chemical reactions. In this work we present the first biochemical and structural data for a GRE-type diol dehydratase from the organism Roseburia inulinivorans (RiDD). Despite high sequence (48% identity) and structural similarity to the GRE-type glycerol dehydratase from Clostridium butyricum, we demonstrate that the RiDD is in fact a diol dehydratase.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2009
Enzymes of the AlkB and CYP153 families catalyze the first step in the catabolism of medium-chain-length alkanes, selective oxidation of the alkane to the 1-alkanol, and enable their host organisms to utilize alkanes as carbon sources. Small, gaseous alkanes, however, are converted to alkanols by evolutionarily unrelated methane monooxygenases. Propane and butane can be oxidized by CYP enzymes engineered in the laboratory, but these produce predominantly the 2-alkanols.
View Article and Find Full Text PDFBackground: Regulation of sulphur metabolism in Corynebacterium glutamicum ATCC 13032 has been studied intensively in the last few years, due to its industrial as well as scientific importance. Previously, the gene cg0156 was shown to belong to the regulon of McbR, a global transcriptional repressor of sulphur metabolism in C. glutamicum.
View Article and Find Full Text PDFIn a recent study, the putative regulatory gene cg0012 was shown to belong to the regulon of McbR, a global transcriptional regulator of sulphur metabolism in Corynebacterium glutamicum ATCC 13032. A deletion of cg0012, now designated ssuR (sulphonate sulphur utilization regulator), led to the mutant strain C. glutamicum DK100, which was shown to be blocked in the utilization of sulphonates as sulphur sources.
View Article and Find Full Text PDFBackground: Corynebacterium glutamicum is a high-GC Gram-positive soil bacterium of great biotechnological importance for the production of amino acids. To facilitate the rational design of sulphur amino acid-producing strains, the pathway for assimilatory sulphate reduction providing the necessary reduced sulfur moieties has to be known. Although this pathway has been well studied in Gram-negative bacteria like Escherichia coli and low-GC Gram-positives like Bacillus subtilis, little is known for the Actinomycetales and other high-GC Gram-positive bacteria.
View Article and Find Full Text PDFIn a recent proteomics study we have shown that the mcbR gene of Corynebacterium glutamicum ATCC 13032 most probably encodes a transcriptional repressor of the TetR type, which regulates the expression of at least six genes involved in the synthesis of sulphur-containing amino acids. By means of DNA microarray hybridizations we detected 86 genes with enhanced transcription in an mcbR mutant when compared with the wild-type strain. Bioinformatic analysis identified the inverted repeat 5'-TAGAC-N6-GTCTA-3' as a consensus sequence within the upstream region of 22 genes and operons, suggesting that the transcription of at least 45 genes is directly controlled by the McbR repressor.
View Article and Find Full Text PDFPotent 5-HT1A/SSRIs at low nanomolar and subnanomolar concentrations were identified in a series of 1-(1H-indol-4-yloxy)-3-(4-benzo[b]thiophen-2-ylpiperidinyl)propan-2-ols. Incorporation of an alpha-Me group in the piperidine ring with its specific stereochemistry enhanced binding affinity at the 5-HT reuptake site and in vitro 5-HT(1A) antagonist functional activity.
View Article and Find Full Text PDFA series of 1-aryloxy-3-piperidinylpropan-2-ols possessing potent dual 5-HT(1A) receptor antagonism and serotonin reuptake inhibition was discovered. 1-(1H-Indol-4-yloxy)-3-(4-benzo[b]thiophen-2-ylpiperidinyl)propan-2-ols exhibited selective and high affinity at the 5-HT(1A) receptor and serotonin reuptake inhibition at nanomolar concentrations for dual activities.
View Article and Find Full Text PDF