Ion channels are targets of considerable therapeutic interest to address a wide variety of neurologic indications, including pain perception. Current pharmacological strategies have focused mostly on small molecule approaches that can be limited by selectivity requirements within members of a channel family or superfamily. Therapeutic antibodies have been proposed, designed, and characterized to alleviate this selectivity limitation; however, there are no Food and Drug Administration-approved therapeutic antibody-based drugs targeting ion channels on the market to date.
View Article and Find Full Text PDFIntroduction: Drug-induced prolongation of the QT interval via block of the hERG potassium channel is a major cause of attrition in drug development. The advent of automated electrophysiology systems has enabled the detection of hERG block earlier in drug discovery. In this study, we have evaluated the suitability of a second generation automated patch clamp instrument, the IonWorks Barracuda, for the characterization of hERG biophysics and pharmacology.
View Article and Find Full Text PDFAm J Respir Crit Care Med
April 2005
Fourteen- and 15-member macrolide antibiotics are under investigation as potential therapeutic agents for cystic fibrosis (CF). The nonantibiotic mechanisms of action of these compounds in CF are not understood. We used nasal potential difference (NPD) measurements to test the effect of macrolides on airway epithelial ion (chloride, sodium) transport of CF mice and humans.
View Article and Find Full Text PDFTo determine if pulmonary oedema fluid (EF) alters ion and fluid transport of distal lung epithelium (DLE), EF was collected from rats in acute heart failure. EF, but not plasma, increased amiloride-insensitive short circuit current (I(sc)) and Na(+)-K(+) ATPase protein content and pump activity of DLE grown in primary culture. Inhibitors of Cl(-) transport or cGMP-gated cation channels had a significant (P < 0.
View Article and Find Full Text PDF