Publications by authors named "Daniel J Felleman"

Area V4 is an intermediate-level area of the macaque visual cortical hierarchy that serves key functions in visual processing by integrating inputs from lower areas such as V1 and V2 and providing feedforward inputs to many higher cortical areas. Previous V4 imaging studies have focused on differential responses to color, orientation, disparity, and motion stimuli, but many details of the spatial organization of significant hue and orientation tuning have not been fully described. We used support vector machine (SVM) decoding of intrinsic cortical single-condition responses to generate high-resolution maps of hue and orientation tuning and to describe the organization of hue and orientation pinwheels in V4.

View Article and Find Full Text PDF

Previous studies in rabbits identified an array of extrastriate cortical areas anatomically connected with V1 but did not describe their internal topography. To address this issue, we injected multiple anatomical tracers into different regions in V1 of the same animal and analyzed the topography of resulting extrastriate labeled fields with reference to the patterns of callosal connections and myeloarchitecture revealed in tangential sections of the flattened cortex. Our results extend previous studies and provide further evidence that rabbit extrastriate areas resemble the visual areas in rats and mice not only in their general location with respect to V1 but also in their internal topography.

View Article and Find Full Text PDF

Objective: Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications.

Approach: To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull.

View Article and Find Full Text PDF

Purpose: Determining how information is represented by populations of neurons in different cortical areas is critical to our understanding of the brain mechanisms of visual perception. Recently, information-theoretical approaches have been applied to the analysis of spike trains of multiple neurons. However, other neurophysiological signals, such as local field potentials (LFPs), offer a different source of information worthy of investigating in this way.

View Article and Find Full Text PDF

Area V2 of macaque monkeys is traditionally thought to consist of 3 distinct functional compartments with characteristic cortical connections and functional properties. Orientation selectivity is one property that has frequently been used to distinguish V2 stripes, however, this receptive field property has been found in a high percentage of neurons across V2 compartments. Using quantitative intrinsic cortical imaging, we derived maps of preferred orientation, orientation selectivity, and orientation gradient in thin stripes, thick stripes, and interstripes in area V2.

View Article and Find Full Text PDF

V2 has long been recognized to contain functionally distinguishable compartments that are correlated with the stripelike pattern of cytochrome oxidase activity. Early electrophysiological studies suggested that color, direction/disparity, and orientation selectivity were largely segregated in the thin, thick, and interstripes, respectively. Subsequent studies revealed a greater degree of homogeneity in the distribution of response properties across stripes, yet color-selective cells were still found to be most prevalent in the thin stripes.

View Article and Find Full Text PDF

The primate visual system has been shown to be organized into an anatomical hierarchy by the application of a few principled criteria. It has been widely assumed that cortical visual processing is also hierarchical, with the anatomical hierarchy providing a defined substrate for clear levels of hierarchical function. A large body of empirical evidence seemed to support this assumption, including the general observations that functional properties of visual neurons grow progressively more complex at progressively higher levels of the anatomical hierarchy.

View Article and Find Full Text PDF

A considerable amount of research over the last decades has focused on the apparent specialization of V2 thin stripes for the processing of color in diurnal primates. However, because V2 thin stripes are functionally heterogeneous in that they consist of largely separate color- and luminance-preferring domains and because the color-preferring domains contain a systematic representation of hue, we hypothesized that they contained functional maps that subserve luminance processing. Here we show, using optical imaging of intrinsic cortical signals and microelectrode recording, that the V2 thin stripe luminance-preferring domains contain spatially segregated modules that encode the direction of relative luminance change.

View Article and Find Full Text PDF

It has been controversial whether the cytochrome oxidase (CO)-dense blobs in primate primary visual cortex (V1) and CO-dense thin stripes in visual area 2 (V2) are parts of a cortical color-processing stream that is segregated from other functional streams. One of the key pieces of evidence for the segregated color stream is the previous report of specific connections between blobs and thin stripes, which is parallel to the connections between interblobs and interstripes. To study the degree of the segregation between the proposed different streams, in the current study, anatomical tracers were injected into different V2 compartments with the functional guidance of optical imaging.

View Article and Find Full Text PDF

Many neurons in visual area V1 respond better to a pop-out stimulus, such as a single vertical bar among many horizontal bars, than to a homogeneous stimulus, such as a stimulus with all vertical bars. Many studies have suggested such cells represent neural correlates of pop-out, or more generally figure-ground segregation. However, preference for pop-out stimuli over homogeneous stimuli could also arise from a nonspecific selectivity for feature discontinuities between the target and the background, without any specificity for pop-out per se.

View Article and Find Full Text PDF

Neurons responding selectively to different colours have been found in various cortical areas in macaque monkeys; however, little is known about whether and how the representation of colour is spatially organized in any cortical area. Cortical area V2 contains modules that respond preferentially to chromatic modulation, which are located in thin cytochrome oxidase stripes. Here we show that within and beyond these modules, gratings of different colours produce activations that peak at different locations.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionb6bg2jmrs0fo3gq9v7kajbgo603ng9np): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once