The majority of proteins excreted by human cells and borne at the cell surface are modified with carbohydrates. Glycoproteins mediate a wide range of processes and adopt fundamental roles in many diseases. The carbohydrates covalently attached to proteins during maturation in the cell directly impact protein structure and function as integral and indispensable components.
View Article and Find Full Text PDFTherapeutic monoclonal antibodies (mAbs) are largely based on the immunoglobulin G1 (IgG1) scaffold, and many elicit a cytotoxic cell-mediated response by binding Fc γ receptors. Core fucosylation, a prevalent modification to the asparagine (N)-linked carbohydrate on the IgG1 crystallizable fragment (Fc), decreases the Fc γ receptor IIIa (CD16a) binding affinity and mAb efficacy. We determined IgG1 Fc fucosylation reduced the CD16a affinity by 1.
View Article and Find Full Text PDFThe structures of non-human antibodies are largely unstudied despite the potential for the identification of alternative structural motifs and physical properties that will benefit a basic understanding of protein and immune system evolution as well as highlight unexplored motifs to improve therapeutic monoclonal antibody. Here we probe the structure and receptor-binding properties of the mouse IgG2c crystallizable fragment (Fc) to compare to mouse IgG2b and human IgG1 Fcs. Models of mIgG2c Fc determined by x-ray crystallography with a complex-type biantennary (to 2.
View Article and Find Full Text PDFAsparagine-linked carbohydrates (N-glycans) are common modifications of eukaryotic proteins that confer multiple properties, including the essential stabilization of therapeutic monoclonal antibodies. Here we present a rapid and efficient strategy for identifying N-glycans that contact polypeptide residues and apply the method to profile the five N-glycans attached to the human antibody receptor CD16A (Fc γ receptor IIIA). Human embryonic kidney 293S cells expressed CD16A with C-labeled N-glycans using standard protein expression techniques and medium supplemented with 3 g/L [C]glucose.
View Article and Find Full Text PDFA comprehensive description of starch biosynthesis and granule assembly remains undefined despite the central nature of starch as an energy storage molecule in plants and as a fundamental calorie source for many animals. Multiple theories regarding the starch synthase (SS)-catalyzed assembly of (α1-4)-linked d-glucose molecules into maltodextrins generally agree that elongation occurs at the non-reducing terminus based on the degradation of radiolabeled maltodextrins, although recent reports challenge this hypothesis. Surprisingly, a direct analysis of the SS catalytic product has not been reported, to our knowledge.
View Article and Find Full Text PDFLeuconostoc mesenteroides B-512FMC dextransucrase was found to synthesize dextrans of varying molecular weights by selecting the concentrations of dextransucrase and sucrose, as well as the temperature. Four enzyme concentrations (50, 10, 1.0, and 0.
View Article and Find Full Text PDFSoluble starch-synthesizing enzymes, starch synthase (SSS) and starch-branching enzyme (SBE), were isolated, fractionated, and purified from white potato tubers (Solanum tuberosum) on a large scale. Five steps were used: potato tuber extract from 2 kg of peeled potatoes, two acetone precipitations, and two fractionations on a large ultrafiltration polysulfone hollow fiber 100 kDa cartridge. Three kinds of fractions were obtained: (1) mixtures of SSS and SBE; (2) SSS, free of SBE; and (3) SBE, free of SSS.
View Article and Find Full Text PDF