Publications by authors named "Daniel J Case"

Understanding the relationship between symmetry breaking, system properties, and instabilities has been a problem of longstanding scientific interest. Symmetry-breaking instabilities underlie the formation of important patterns in driven systems, but there are many instances in which such instabilities are undesirable. Using parametric resonance as a model process, here we show that a range of states that would be destabilized by symmetry-breaking instabilities can be preserved and stabilized by the introduction of suitable system asymmetry.

View Article and Find Full Text PDF

The tendency for flows in microfluidic systems to behave linearly poses challenges for designing integrated flow control schemes to carry out complex fluid processing tasks. This hindrance precipitated the use of numerous external control devices to manipulate flows, thereby thwarting the potential scalability and portability of lab-on-a-chip technology. Here, we devise a microfluidic network exhibiting nonlinear flow dynamics that enable new mechanisms for on-chip flow control.

View Article and Find Full Text PDF

Microfluidic systems are now being designed with precision as miniaturized fluid manipulation devices that can execute increasingly complex tasks. However, their operation often requires numerous external control devices owing to the typically linear nature of microscale flows, which has hampered the development of integrated control mechanisms. Here we address this difficulty by designing microfluidic networks that exhibit a nonlinear relation between the applied pressure and the flow rate, which can be harnessed to switch the direction of internal flows solely by manipulating the input and/or output pressures.

View Article and Find Full Text PDF

In the fluid transport of particles, it is generally expected that heavy particles carried by a laminar fluid flow moving downward will also move downward. We establish a theory to show, however, that particles can be dynamically levitated and lifted by interacting vortices in such flows, thereby moving against gravity and the asymptotic direction of the flow, even when they are orders of magnitude denser than the fluid. The particle levitation is rigorously demonstrated for potential flows and supported by simulations for viscous flows.

View Article and Find Full Text PDF