Luteinizing hormone (LH), a heterodimeric glycoprotein produced by pituitary gonadotrope cells, regulates gonadal function. Hypothalamic gonadotropin-releasing hormone (GnRH) stimulates LH synthesis and secretion. GnRH induces LHβ subunit (Lhb) expression via the transcription factor, early growth response 1 (EGR1), acting on the Lhb promoter.
View Article and Find Full Text PDFActivins are one of the three distinct subclasses within the greater Transforming growth factor β (TGFβ) superfamily. First discovered for their critical roles in reproductive biology, activins have since been shown to alter cellular differentiation and proliferation. At present, members of the activin subclass include activin A (ActA), ActB, ActC, ActE, and the more distant members myostatin and GDF11.
View Article and Find Full Text PDFSingle same cell RNAseq/ATACseq multiome data provide unparalleled potential to develop high resolution maps of the cell-type specific transcriptional regulatory circuitry underlying gene expression. We present CREMA, a framework that recovers the full cis-regulatory circuitry by modeling gene expression and chromatin activity in individual cells without peak-calling or cell type labeling constraints. We demonstrate that CREMA overcomes the limitations of existing methods that fail to identify about half of functional regulatory elements which are outside the called chromatin 'peaks'.
View Article and Find Full Text PDFTo facilitate single-cell multi-omics analysis and improve reproducibility, we present SPEEDI (Single-cell Pipeline for End to End Data Integration), a fully automated end-to-end framework for batch inference, data integration, and cell type labeling. SPEEDI introduces data-driven batch inference and transforms the often heterogeneous data matrices obtained from different samples into a uniformly annotated and integrated dataset. Without requiring user input, it automatically selects parameters and executes pre-processing, sample integration, and cell type mapping.
View Article and Find Full Text PDFDetection of circulating TSH is a first-line test of thyroid dysfunction, a major health problem (affecting about 5% of the population) that, if untreated, can lead to a significant deterioration of quality of life and adverse effects on multiple organ systems. Human TSH levels display both pulsatile and (nonpulsatile) basal TSH secretion patterns; however, the importance of these in regulating thyroid function and their decoding by the thyroid is unknown. Here, we developed a novel ultra-sensitive ELISA that allows precise detection of TSH secretion patterns with minute resolution in mouse models of health and disease.
View Article and Find Full Text PDFActivins are one of the three distinct subclasses within the greater Transforming Growth Factor β (TGFβ) superfamily. First discovered for their critical roles in reproductive biology, activins have since been shown to alter cellular differentiation and proliferation. At present, members of the activin subclass include activin A (ActA), ActB, ActC, ActE, and the more distant members myostatin and GDF11.
View Article and Find Full Text PDFCoronary heart disease damages the trabecular myocardium, and the regeneration of trabecular vessels may alleviate ischemic injury. However, the origins and developmental mechanisms of trabecular vessels remain unknown. Here, we show that murine ventricular endocardial cells generate trabecular vessels through an "angioEMT" mechanism.
View Article and Find Full Text PDFFollicle-stimulating hormone (FSH), a dimeric glycoprotein produced by pituitary gonadotrope cells, regulates spermatogenesis in males and ovarian follicle growth in females. Hypothalamic gonadotropin-releasing hormone (GnRH) stimulates FSHβ subunit gene (Fshb) transcription, though the underlying mechanisms are poorly understood. To address this gap in knowledge, we examined changes in pituitary gene expression in GnRH-deficient mice (hpg) treated with a regimen of exogenous GnRH that increases pituitary Fshb but not luteinizing hormone β (Lhb) messenger RNA levels.
View Article and Find Full Text PDFInhibins are transforming growth factor-β family heterodimers that suppress follicle-stimulating hormone (FSH) secretion by antagonizing activin class ligands. Inhibins share a common β chain with activin ligands. Follistatin is another activin antagonist, known to bind the common β chain of both activins and inhibins.
View Article and Find Full Text PDFThe inhibins control reproduction by suppressing follicle-stimulating hormone synthesis in pituitary gonadotrope cells. The newly discovered inhibin B coreceptor, TGFBR3L, is selectively and highly expressed in gonadotropes in both mice and humans. Here, we describe our initial characterization of mechanisms controlling cell-specific Tgfbr3l/TGFBR3L transcription.
View Article and Find Full Text PDFActivin ligands are formed from two disulfide-linked inhibin β (Inhβ) subunit chains. They exist as homodimeric proteins, as in the case of activin A (ActA; InhβA/InhβA) or activin C (ActC; InhβC/InhβC), or as heterodimers, as with activin AC (ActAC; InhβA:InhβC). While the biological functions of ActA and activin B (ActB) have been well characterized, little is known about the biological functions of ActC or ActAC.
View Article and Find Full Text PDFLoss of function mutations in IGSF1/Igsf1 cause central hypothyroidism. Igsf1 knockout mice have reduced pituitary thyrotropin-releasing hormone receptor, Trhr, expression, perhaps contributing to the phenotype. Because thyroid hormones negatively regulate Trhr, we hypothesized that IGSF1 might affect thyroid hormone availability in pituitary thyrotropes.
View Article and Find Full Text PDFImmunoglobulin superfamily, member 1 (IGSF1) is a transmembrane glycoprotein with high expression in the mammalian pituitary gland. Mutations in the IGSF1 gene cause congenital central hypothyroidism in humans. The IGSF1 protein is co-translationally cleaved into N- and C-terminal domains (NTD and CTD), the latter of which is trafficked to the plasma membrane and appears to be the functional portion of the molecule.
View Article and Find Full Text PDFMammalian reproduction depends on the gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone, which are secreted by pituitary gonadotrope cells. The zinc-finger transcription factor GATA2 was previously implicated in FSH production in male mice; however, its mechanisms of action and role in females were not determined. To directly address GATA2 function in gonadotropes, we generated and analyzed gonadotrope-specific Gata2 KO mice using the Cre-lox system.
View Article and Find Full Text PDFDespite their importance in tissue homeostasis and renewal, human pituitary stem cells (PSCs) are incompletely characterized. We describe a human single nucleus RNA-seq and ATAC-seq resource from pediatric, adult, and aged postmortem pituitaries (snpituitaryatlas.princeton.
View Article and Find Full Text PDFThe orphan nuclear receptor steroidogenic factor-1 (SF-1 or NR5A1) is an indispensable regulator of adrenal and gonadal formation, playing roles in sex determination, hypothalamic development, and pituitary function. This study aimed to identify the roles of SF-1 in postnatal female reproductive function. Using a progesterone receptor-driven Cre recombinase, we developed a novel murine model, characterized by conditional depletion of SF-1 [PR-Cre;Nr5a1f/f; conditional knockout (cKO)] in the hypothalamic-pituitary-gonadal axis.
View Article and Find Full Text PDFGonadotropin-releasing hormone (GnRH) is the primary neuropeptide controlling reproduction in vertebrates. GnRH stimulates follicle-stimulating hormone (FSH) and luteinizing hormone (LH) synthesis via a G-protein-coupled receptor, GnRHR, in the pituitary gland. In mammals, GnRHR lacks a C-terminal cytosolic tail (Ctail) and does not exhibit homologous desensitization.
View Article and Find Full Text PDFFollicle-stimulating hormone (FSH), a key regulator of ovarian function, is often used in infertility treatment. Gonadal inhibins suppress FSH synthesis by pituitary gonadotrope cells. The TGFβ type III receptor, betaglycan, is required for inhibin A suppression of FSH.
View Article and Find Full Text PDFThe Hippo transcriptional coactivators YAP and TAZ exert critical roles in morphogenesis, organ size determination and tumorigenesis in many tissues. Although Hippo kinase cascade activity was recently reported in the anterior pituitary gland in mice, the role of the Hippo effectors in regulating gonadotropin production remains unknown. The objective of this study was therefore to characterize the roles of YAP and TAZ in gonadotropin synthesis and secretion.
View Article and Find Full Text PDF