Biological systems are acknowledged to be robust to perturbations but a rigorous understanding of this has been elusive. In a mathematical model, perturbations often exert their effect through parameters, so sizes and shapes of parametric regions offer an integrated global estimate of robustness. Here, we explore this "parameter geography" for bistability in post-translational modification (PTM) systems.
View Article and Find Full Text PDFA common problem when analyzing models, such as mathematical modeling of a biological process, is to determine if the unknown parameters of the model can be determined from given input-output data. Identifiable models are models such that the unknown parameters can be determined to have a finite number of values given input-output data. The total number of such values over the complex numbers is called the identifiability degree of the model.
View Article and Find Full Text PDFResearchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation and model selection. These are all optimization problems, well known to be challenging due to nonlinearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data are available.
View Article and Find Full Text PDF