Publications by authors named "Daniel J Arismendi-Arrieta"

Optimizing a target function over the space of organic molecules is an important problem appearing in many fields of applied science but also a very difficult one due to the vast number of possible molecular systems. We propose an evolutionary Monte Carlo algorithm for solving such problems which is capable of straightforwardly tuning both exploration and exploitation characteristics of an optimization procedure while retaining favorable properties of genetic algorithms. The method, dubbed MOSAiCS (etropolis ptimization by ampling daptively n hemical pace), is tested on problems related to optimizing components of battery electrolytes, namely, minimizing solvation energy in water or maximizing dipole moment while enforcing a lower bound on the HOMO-LUMO gap; optimization was carried out over sets of molecular graphs inspired by QM9 and Electrolyte Genome Project (EGP) data sets.

View Article and Find Full Text PDF

The H2O and H2O2 molecules resemble each other in a multitude of ways as has been noted in the literature. Here, we present density functional theory (DFT) calculations for the H2O2(s) and H2O2·2H2O(s) crystals and make selected comparisons with ice polymorphs. The performance of a number of dispersion-corrected density functionals-both self-consistent and a posteriori ones-are assessed, and we give special attention to the D3 correction and its effects.

View Article and Find Full Text PDF

Dissolved ions in aqueous media are ubiquitous in many physicochemical processes, with a direct impact on research fields, such as chemistry, climate, biology, and industry. Ions play a crucial role in the structure of the surrounding network of water molecules as they can either weaken or strengthen it. Gaining a thorough understanding of the underlying forces from small clusters to bulk solutions is still challenging, which motivates further investigations.

View Article and Find Full Text PDF

The formation of specific clathrate hydrates and their transformation at given thermodynamic conditions depends on the interactions between the guest molecule/s and the host water lattice. Understanding their structural stability is essential to control structure-property relations involved in different technological applications. Thus, the energetic aspects relative to CO @sI clathrate hydrate are investigated through the computation of the underlying interactions, dominated by hydrogen bonds and van der Waals forces, from first-principles electronic structure approaches.

View Article and Find Full Text PDF

Through reliable first-principles computations, we have demonstrated the impact of CO molecules enclathration on the stability of sI clathrate hydrates. Given the delicate balance between the interaction energy components (van der Waals, hydrogen bonds) present on such systems, we follow a systematic bottom-up approach starting from the individual 5 and 5 6 sI cages, up to all existing combinations of two-adjacent sI crystal cages to evaluate how such clathrate-like models perform on the evaluation of the guest-host and first-neighbors inter-cage effects, respectively. Interaction and binding energies of the CO occupation of the sI cages were computed using DF-MP2 and different DFT/DFT-D electronic structure methodologies.

View Article and Find Full Text PDF

Energetics and structural properties of selected type and size He@hydrate frameworks, e.g., from regular structured ice channels to clathrate-like cages, are presented from first-principles quantum chemistry methods.

View Article and Find Full Text PDF

We have investigated different approaches to handling parallel-tempering Monte Carlo (PTMC) simulations in the isothermal-isobaric ensemble of molecular cluster/nanoparticle systems for predicting structural phase diagram transitions. We have implemented various methodologies that consist of treating pressure implicitly through its effect on the volume. Thus, the main problem in the simulations under nonzero pressure becomes the volume definition of the finite nonperiodic system, and we considered approaches based on the particles' coordinates.

View Article and Find Full Text PDF

Hypothesis: The internal topology of soft nanoparticles - regular (ideal) vs disordered (realistic) networks - and its intrinsic deformability (degree of cross-linking) influences solvent permeability (uptake, invasive and mixing capacities) under interfacial confinement.

Methodology: By means of large-scale molecular dynamics simulations we study nanogels at liquid-liquid (A-B) interfaces covering the whole range of cross-linking degrees and interfacial strengths. The nanogel permeability is analyzed with a grid representation that accounts for the surface fluctuations and adds to the density profiles the exact number of liquid particles inside the nanogel.

View Article and Find Full Text PDF

This study reports a general scenario for the out-of-equilibrium features of collapsing polymeric architectures. We use molecular dynamics simulations to characterize the coarsening kinetics, in bad solvent, for several macromolecular systems with an increasing degree of structural complexity. In particular, we focus on: flexible and semiflexible polymer chains, star polymers with 3 and 12 arms, and microgels with both ordered and disordered networks.

View Article and Find Full Text PDF

Clathrate hydrates of CO have been proposed as potential molecular materials in tackling important environmental problems related to greenhouse gases capture and storage. Despite the increasing interest in such hydrates and their technological applications, a molecular-level understanding of their formation and properties is still far from complete. Modeling interactions is a challenging and computationally demanding task, essential to reliably determine molecular properties.

View Article and Find Full Text PDF

Recently, empty hydrate structures sI, sII, sH, and others have been proposed as low-density ice structures by both experimental observations and computer simulations. Some of them have been synthesized in the laboratory, which motivates further investigations on the stability of such guest-free clathrate structures. Using semiempirical and ab initio-based water models, as well as dispersion-corrected density functional theory approaches, we predict their stability, including cooperative many-body effects, in comparison with reference data from converged wave function-based DF-MP2 electronic structure calculations.

View Article and Find Full Text PDF

New potential energy functions (i-TTM) describing the interactions between halide ions and water molecules are reported. The i-TTM potentials are derived from fits to electronic structure data and include an explicit treatment of two-body repulsion, electrostatics, and dispersion energy. Many-body effects are represented through classical polarization within an extended Thole-type model.

View Article and Find Full Text PDF

The strong temperature dependence of the I(-)·(H2O)2 vibrational predissociation spectrum is traced to the intracluster dissociation of the ion-bound water dimer into independent water monomers that remain tethered to the ion. The thermodynamics of this process is determined using van't Hoff analysis of key features that quantify the relative populations of H-bonded and independent water molecules. The dissociation enthalpy of the isolated water dimer is thus observed to be reduced by roughly a factor of three upon attachment to the ion.

View Article and Find Full Text PDF