The evolutionary relationships between species are typically represented in the biological literature by rooted phylogenetic trees. However, a tree fails to capture ancestral reticulate processes, such as the formation of hybrid species or lateral gene transfer events between lineages, and so the history of life is more accurately described by a rooted phylogenetic network. Nevertheless, phylogenetic networks may be complex and difficult to interpret, so biologists sometimes prefer a tree that summarises the central tree-like trend of evolution.
View Article and Find Full Text PDFSummary: Catalytic reaction networks serve as fundamental models for understanding biochemical systems. CatReNet is a novel software designed to facilitate interactive analysis of such networks. It offers fast and exact algorithms for computing various types of self-sustaining autocatalytic subnetworks, including so-called CAFs (constructively autocatalytic food-generated networks), RAFs (reflexively autocatalytic food-generated networks), and pseudo-RAFs.
View Article and Find Full Text PDFMedium-chain carboxylates (MCCs) are used in various industrial applications. These chemicals are typically extracted from palm oil, which is deemed not sustainable. Recent research has focused on microbial chain elongation using reactors to produce MCCs, such as -caproate (C6) and -caprylate (C8), from organic substrates such as wastes.
View Article and Find Full Text PDFThe concept of an autocatalytic network of reactions that can form and persist, starting from just an available food source, has been formalized by the notion of a reflexively autocatalytic and food-generated (RAF) set. The theory and algorithmic results concerning RAFs have been applied to a range of settings, from metabolic questions arising at the origin of life, to ecological networks, and cognitive models in cultural evolution. In this article, we present new structural and algorithmic results concerning RAF sets, by studying more complex modes of catalysis that allow certain reactions to require multiple catalysts (or to not require catalysis at all), and discuss the differing ways catalysis has been viewed in the literature.
View Article and Find Full Text PDFMethanogenesis allows methanogenic archaea to generate cellular energy for their growth while producing methane. Thermophilic hydrogenotrophic species of the genus have been recognized as robust biocatalysts for a circular carbon economy and are already applied in power-to-gas technology with biomethanation, which is a platform to store renewable energy and utilize captured carbon dioxide. Here, we generated curated genome-scale metabolic reconstructions for three strains and investigated differences in the growth performance of these same strains in chemostat bioreactor experiments with hydrogen and carbon dioxide or formate as substrates.
View Article and Find Full Text PDFNeighborNet constructs phylogenetic networks to visualize distance data. It is a popular method used in a wide range of applications. While several studies have investigated its mathematical features, here we focus on computational aspects.
View Article and Find Full Text PDFA microbial community maintains its ecological dynamics via metabolite crosstalk. Hence, knowledge of the metabolome, alongside its populace, would help us understand the functionality of a community and also predict how it will change in atypical conditions. Methods that employ low-cost metagenomic sequencing data can predict the metabolic potential of a community, that is, its ability to produce or utilize specific metabolites.
View Article and Find Full Text PDFTransformer-based language models are successfully used to address massive text-related tasks. DNA methylation is an important epigenetic mechanism, and its analysis provides valuable insights into gene regulation and biomarker identification. Several deep learning-based methods have been proposed to identify DNA methylation, and each seeks to strike a balance between computational effort and accuracy.
View Article and Find Full Text PDFFront Bioinform
June 2023
Phylogenetic analysis frequently leads to the creation of many phylogenetic trees, either from using multiple genes or methods, or through bootstrapping or Bayesian analysis. A consensus tree is often used to summarize what the trees have in common. Consensus networks were introduced to also allow the visualization of the main incompatibilities among the trees.
View Article and Find Full Text PDFThird-generation sequencing technologies are being increasingly used in microbiome research and this has given rise to new challenges in computational microbiome analysis. Oxford Nanopore's MinION is a portable sequencer that streams data that can be basecalled on-the-fly. Here we give an introduction to the MAIRA software, which is designed to analyze MinION sequencing reads from a microbiome sample, as they are produced in real-time, on a laptop.
View Article and Find Full Text PDFMetagenomics is the study of microbiomes using DNA sequencing technologies. Basic computational tasks are to determine the taxonomic composition (who is out there?), the functional composition (what can they do?), and also to correlate changes of composition to changes in external parameters (how do they compare?). One approach to address these issues is to first align all sequences against a protein reference database such as NCBI-nr and to then perform taxonomic and functional binning of all sequences based on their alignments.
View Article and Find Full Text PDFMotivation: Metagenomic projects often involve large numbers of large sequencing datasets (totaling hundreds of gigabytes of data). Thus, computational preprocessing and analysis are usually performed on a server. The results of such analyses are then usually explored interactively.
View Article and Find Full Text PDFDuring the last two decades, yeast has been used as a biological tool to produce various small molecules, biofuels, etc., using an inexpensive bioprocess. The application of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein (Cas) techniques in yeast genetic and metabolic engineering has made a paradigm shift, particularly with a significant improvement in targeted chromosomal integration using synthetic donor constructs, which was previously a challenge.
View Article and Find Full Text PDFIn microbiome analysis, functional profiling is based on assigning reads or contigs to terms or nodes in a functional classification system. There are a number of large, general-purpose functional classifications that are in use, such as eggNOG, KEGG, InterPro and SEED. Smaller, special-purpose classifications include CARD, EC, MetaCyc and VFDB.
View Article and Find Full Text PDFMotivation: Metagenomics is the study of microbiomes using DNA sequencing. A microbiome consists of an assemblage of microbes that is associated with a 'theater of activity' (ToA). An important question is, to what degree does the taxonomic and functional content of the former depend on the (details of the) latter? Here, we investigate a related technical question: Given a taxonomic and/or functional profile estimated from metagenomic sequencing data, how to predict the associated ToA? We present a deep-learning approach to this question.
View Article and Find Full Text PDFAgroindustrial waste, such as fruit residues, are a renewable, abundant, low-cost, commonly-used carbon source. Biosurfactants are molecules of increasing interest due to their multifunctional properties, biodegradable nature and low toxicity, in comparison to synthetic surfactants. A better understanding of the associated microbial communities will aid prospecting for biosurfactant-producing microorganisms.
View Article and Find Full Text PDFIn microbiome analysis, one main approach is to align metagenomic sequencing reads against a protein reference database, such as NCBI-nr, and then to perform taxonomic and functional binning based on the alignments. This approach is embodied, for example, in the standard DIAMOND+MEGAN analysis pipeline, which first aligns reads against NCBI-nr using DIAMOND and then performs taxonomic and functional binning using MEGAN. Here, we propose the use of the AnnoTree protein database, rather than NCBI-nr, in such alignment-based analyses to determine the prokaryotic content of metagenomic samples.
View Article and Find Full Text PDFMicrobial studies typically involve the sequencing and assembly of draft genomes for individual microbes or whole microbiomes. Given a draft genome, one first task is to determine its phylogenetic context, that is, to place it relative to the set of related reference genomes. We provide a new interactive graphical tool that addresses this task using Mash sketches to compare against all bacterial and archaeal representative genomes in the Genome Taxonomy Database taxonomy, all within the framework of SplitsTree5.
View Article and Find Full Text PDFfamily, comprising diverse thermoacidophilic and aerobic sulfur-metabolizing Archaea from various geographical locations, offers an ideal opportunity to infer the evolutionary dynamics across the members of this family. Comparative pan-genomics coupled with evolutionary analyses has revealed asymmetric genome evolution within the family. The trend of genome streamlining followed by periods of differential gene gains resulted in an overall genome expansion in some species of this family, whereas there was reduction in others.
View Article and Find Full Text PDFRooted phylogenetic networks provide a way to describe species' relationships when evolution departs from the simple model of a tree. However, networks inferred from genomic data can be highly tangled, making it difficult to discern the main reticulation signals present. In this paper, we describe a natural way to transform any rooted phylogenetic network into a simpler canonical network, which has desirable mathematical and computational properties, and is based only on the 'visible' vertices in the original network.
View Article and Find Full Text PDFNew long read sequencing technologies offer huge potential for effective recovery of complete, closed genomes from complex microbial communities. Using long read data (ONT MinION) obtained from an ensemble of activated sludge enrichment bioreactors we recover 22 closed or complete genomes of community members, including several species known to play key functional roles in wastewater bioprocesses, specifically microbes known to exhibit the polyphosphate- and glycogen-accumulating organism phenotypes (namely Candidatus Accumulibacter and Dechloromonas, and Micropruina, Defluviicoccus and Candidatus Contendobacter, respectively), and filamentous bacteria (Thiothrix) associated with the formation and stability of activated sludge flocs. Additionally we demonstrate the recovery of close to 100 circularised plasmids, phages and small microbial genomes from these microbial communities using long read assembled sequence.
View Article and Find Full Text PDFOne main approach to computational analysis of microbiome sequences is to first align against a reference database of annotated protein sequences (NCBI-nr) and then perform taxonomic and functional binning of the sequences based on the resulting alignments. For both short and long reads (or assembled contigs), alignment is performed using DIAMOND, whereas taxonomic and functional binning, followed by inter- active exploration and analysis, is performed using MEGAN. We provide two step-by-step descriptions of this approach: © 2021 The Authors.
View Article and Find Full Text PDFBulk production of medium-chain carboxylates (MCCs) with 6-12 carbon atoms is of great interest to biotechnology. Open cultures (e.g.
View Article and Find Full Text PDF