Publications by authors named "Daniel Horowitz"

Integration of multiomics data remains a key challenge in fulfilling the potential of comprehensive systems biology. Multiple-block orthogonal projections to latent structures (OnPLS) is a projection method that simultaneously models multiple data matrices, reducing feature space without relying on a priori biological knowledge. In order to improve the interpretability of OnPLS models, the associated multi-block variable influence on orthogonal projections (MB-VIOP) method is used to identify variables with the highest contribution to the model.

View Article and Find Full Text PDF

Asthma arises from the complex interplay of inflammatory pathways in diverse cell types and tissues. We sought to undertake a comprehensive transcriptomic assessment of the epithelium and airway T cells that remain understudied in asthma and investigate interactions between multiple cells and tissues. Epithelial brushings and flow-sorted CD3 T cells from sputum and BAL were obtained from healthy subjects (n = 19) and patients with asthma (mild, moderate, and severe asthma; n = 46).

View Article and Find Full Text PDF

Chronic cough is associated with airway inflammation and remodelling. Abnormal airway smooth muscle cell (ASMC) function may underlie mechanisms of chronic cough. Our objective was to examine the transcriptome and focused secretome of ASMCs from chronic cough patients and healthy non-cough volunteers.

View Article and Find Full Text PDF

Background: Asthma is a disease of varying severity and differing disease mechanisms. To date, studies aimed at stratifying asthma into clinically useful phenotypes have produced a number of phenotypes that have yet to be assessed for stability and to be validated in independent cohorts. The aim of this study was to define and validate, for the first time ever, clinically driven asthma phenotypes using two independent, severe asthma cohorts: ADEPT and U-BIOPRED.

View Article and Find Full Text PDF

Objective: Two hypotheses were tested: 1. People from privileged backgrounds had better survival than those from less privileged backgrounds. 2.

View Article and Find Full Text PDF

Rationale: Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology with a variable and unpredictable course.

Objectives: The aim of this study was to identify and validate plasma proteins that are predictive of outcome in IPF.

Methods: Plasma samples were available for 241 patients with IPF (140 derivation and 101 validation).

View Article and Find Full Text PDF

Introduction: Tn polyagglutination syndrome is a rare disorder that has been reported on only a few occasions in the literature, and, to the best of our knowledge, never before in the context of febrile neutropenia.

Case Presentation: We report the case of a 26-year-old Caucasian woman who presented to our emergency department complaining of a persistent fever over the previous three days. She had a history of long-standing refractory pancytopenia with multi-lineage dysplasia and severe neutropenia, but she had rarely experienced infection.

View Article and Find Full Text PDF

The informed consent doctrine was conceived as a basis for allowing patients to meaningfully participate in the decision-making process. It has evolved into a formal, legal document that reflects a desire by physicians and surgeons to have patients execute "waivers of liability." In the process it has lost its educational value by shifting the emphasis to obtaining a "preoperative release" from an exchange of information upon which a patient can make important decisions about their healthcare choices.

View Article and Find Full Text PDF

Synucleins are proteins known for their malfunction in a group of illnesses called synucleopathies, which includes Alzheimer's and Parkinson's disease. To learn more about the role of synucleins in the CNS, we have studied levels of message coding for alpha-, beta-, and gamma-synuclein using quantitative RT-PCR. Levels of synuclein mRNAs were studied in the cerebral cortex (left and right, anterior and posterior), hippocampus, striatum, and cerebellum, obtained from 5-d-old (newborn), 1-mo (juvenile)-, and 6-, and 9-mo (adult)-old rats.

View Article and Find Full Text PDF

Understanding biological complexity arising from patterns of gene expression requires accurate and precise measurement of RNA levels across large numbers of genes simultaneously. Real time PCR (RT-PCR) in a microtiter plate is the preferred method for quantitative transcriptional analysis but scaling RT-PCR to higher throughputs in this fluidic format is intrinsically limited by cost and logistic considerations. Hybridization microarrays measure the transcription of many thousands of genes simultaneously yet are limited by low sensitivity, dynamic range, accuracy and sample throughput.

View Article and Find Full Text PDF

Microarray technology enables high-throughput testing of gene expression to investigate various neuroscience related questions. This in turn creates a demand for scalable methods to confirm microarray results and the opportunity to use this information to discover and test novel pathways and therapeutic applications. Discovery of new central nervous system (CNS) treatments requires a comprehensive understanding of multiple aspects including the biology of a target, the pathophysiology of a disease/disorder, and the selection of successful lead compounds as well as efficient biomarker and drug disposition strategies such as absorption (how a drug is absorbed), distribution (how a drug spreads through an organism), metabolism (chemical conversion of a drug, if any, and into which substances), and elimination (how is a drug eliminated) (ADME).

View Article and Find Full Text PDF

The biopharmaceutical industry is currently being presented with opportunities to improve research and business efficiency via automation and the integration of various systems. In the examples discussed, industrial high-throughput screening systems are integrated with functional tools and bioinformatics to facilitate target and biomarker identification and validation. These integrative functional approaches generate value-added opportunities by leveraging available automation and information technologies into new applications that are broadly applicable to different types of projects, and by improving the overall research and development and business efficiency via the integration of various systems.

View Article and Find Full Text PDF

Chemokines induce rapid hematopoietic stem and progenitor cell mobilization and synergize with hematopoietic cytokines in mobilizing stem and progenitor cells. These proteins alone and in combination offer new paradigms for autologous and allogeneic peripheral blood stem cell transplantation (PBSCT). The mechanisms responsible for hematopoietic stem cell (HSC) mobilization either with growth factors or chemokines are largely unknown, but a better understanding of these mechanisms will permit the development of novel, more rapid and efficacious regimens.

View Article and Find Full Text PDF

There is increasing evidence that neuronal factors can affect hematopoietic cell proliferation. Endogenous opioids with specificity for several opioid receptor classes were tested for their ability to inhibit murine and human hematopoietic progenitor cell proliferation. Tyr-MIF, an opioid tetrapeptide (H-Tyr-Pro-Leu-Gly-NH2), demonstrated a dose-dependent inhibition of colony formation at concentrations < 10 uM, inhibiting M-CSF and G-CSF-responsive progenitor cells equally.

View Article and Find Full Text PDF