Publications by authors named "Daniel Horn-Ghetko"

Ubiquitin ligation is typically executed by hallmark E3 catalytic domains. Two such domains, 'cullin-RING' and 'RBR', are individually found in several hundred human E3 ligases, and collaborate with E2 enzymes to catalyze ubiquitylation. However, the vertebrate-specific CUL9 complex with RBX1 (also called ROC1), of interest due to its tumor suppressive interaction with TP53, uniquely encompasses both cullin-RING and RBR domains.

View Article and Find Full Text PDF

Reactive aldehydes are produced by normal cellular metabolism or after alcohol consumption, and they accumulate in human tissues if aldehyde clearance mechanisms are impaired. Their toxicity has been attributed to the damage they cause to genomic DNA and the subsequent inhibition of transcription and replication. However, whether interference with other cellular processes contributes to aldehyde toxicity has not been investigated.

View Article and Find Full Text PDF

Protein ubiquitylation typically involves isopeptide bond formation between the C-terminus of ubiquitin to the side-chain amino group on Lys residues. However, several ubiquitin ligases (E3s) have recently been identified that ubiquitylate proteins on non-Lys residues. For instance, HOIL-1 belongs to the RING-in-between RING (RBR) class of E3s and has an established role in Ser ubiquitylation.

View Article and Find Full Text PDF

Ubiquitin (Ub) chain formation by homologous to E6AP C-terminus (HECT)-family E3 ligases regulates vast biology, yet the structural mechanisms remain unknown. We used chemistry and cryo-electron microscopy (cryo-EM) to visualize stable mimics of the intermediates along K48-linked Ub chain formation by the human E3, UBR5. The structural data reveal a ≈ 620 kDa UBR5 dimer as the functional unit, comprising a scaffold with flexibly tethered Ub-associated (UBA) domains, and elaborately arranged HECT domains.

View Article and Find Full Text PDF

Protein post-translational modification with ubiquitin (Ub) is a versatile signal regulating almost all aspects of cell biology, and an increasing range of diseases is associated with impaired Ub modification. In this light, the Ub system offers an attractive, yet underexplored route to the development of novel targeted treatments. A promising strategy for small molecule intervention is posed by the final components of the enzymatic ubiquitination cascade, E3 ligases, as they determine the specificity of the protein ubiquitination pathway.

View Article and Find Full Text PDF

Specificity in the ubiquitin system depends on E3 ligases, largely belonging to a handful of families discovered more than a decade ago. However, the last two years brought a quantum leap in the identification and/or mechanistic characterization of eukaryotic ubiquitin ligases, in part through implementation of activity-based chemical probes and cryo-EM. Here, we survey recent discoveries of RING-Cys-Relay, RZ-finger, and neddylated cullin-RING-ARIH RBR E3-E3 ubiquitin ligase mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • * Structural and biochemical analyses demonstrate how ARIH2 is autoinhibited but becomes activated when partnered with CUL5-RBX2, highlighting cullin-specific regulatory mechanisms dictated by NEDD8.
  • * The findings indicate that NEDD8 promotes structural changes in CUL5 that reveal hidden binding sites for ARIH2, suggesting that this allosteric regulation of protein interactions could be leveraged for therapeutic advancements.
View Article and Find Full Text PDF

E3 ligases are typically classified by hallmark domains such as RING and RBR, which are thought to specify unique catalytic mechanisms of ubiquitin transfer to recruited substrates. However, rather than functioning individually, many neddylated cullin-RING E3 ligases (CRLs) and RBR-type E3 ligases in the ARIH family-which together account for nearly half of all ubiquitin ligases in humans-form E3-E3 super-assemblies. Here, by studying CRLs in the SKP1-CUL1-F-box (SCF) family, we show how neddylated SCF ligases and ARIH1 (an RBR-type E3 ligase) co-evolved to ubiquitylate diverse substrates presented on various F-box proteins.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on how adding ubiquitin and ubiquitin-like proteins to other proteins is crucial for regulating cellular processes in eukaryotic organisms, but current methods to study this are limited.
  • - Researchers developed a new tool that allows for the precise and controlled addition of ubiquitin to proteins, using advanced techniques that maintain the natural structure of these proteins even in complex environments.
  • - This method enables the specific tagging of proteins with ubiquitin in living cells without relying on the usual cellular machinery, thus facilitating in-depth analysis of how ubiquitylation affects biological functions over time.
View Article and Find Full Text PDF

The characterization of low-affinity protein complexes is challenging due to their dynamic nature. Here, we present a method to stabilize transient protein complexes in vivo by generating a covalent and conformationally flexible bridge between the interaction partners. A highly active pyrrolysyl tRNA synthetase mutant directs the incorporation of unnatural amino acids bearing bromoalkyl moieties (BrCnK) into proteins.

View Article and Find Full Text PDF