Nucleic Acids Res
February 2014
DNA 'assembly' from 'building blocks' remains a cornerstone in synthetic biology, whether it be for gene synthesis (∼ 1 kb), pathway engineering (∼ 10 kb) or synthetic genomes (>100 kb). Despite numerous advances in the techniques used for DNA assembly, verification of the assembly is still a necessity, which becomes cost-prohibitive and a logistical challenge with increasing scale. Here we describe for the first time a comprehensive, high-throughput solution for structural DNA assembly verification by restriction digest using exhaustive in silico enzyme screening, rolling circle amplification of plasmid DNA, capillary electrophoresis and automated digest pattern recognition.
View Article and Find Full Text PDFLocomotion and mating ability are crucial for male reproductive success yet are energetically costly and susceptible to physiological stress. In the Sierra willow beetle Chrysomela aeneicollis, male mating success depends on locating and mating with as many females as possible. Variation at the glycolytic enzyme locus phosphoglucose isomerase (Pgi) is concordant with a latitudinal temperature gradient in these populations, with Pgi-1 frequent in the cooler north, Pgi-4 in the warmer south, and alleles 1 and 4 in relatively equal frequency in areas intermediate in geography and climate.
View Article and Find Full Text PDFElectrochemical DNA (E-DNA) sensors, which are rapid, reagentless, and readily integrated into microelectronics and microfluidics, appear to be a promising alternative to optical methods for the detection of specific nucleic acid sequences. Keeping with this, a large number of distinct E-DNA architectures have been reported to date. Most, however, suffer from one or more drawbacks, including low signal gain (the relative signal change in the presence of complementary target), signal-off behavior (target binding reduces the signaling current, leading to poor gain and raising the possibility that sensor fouling or degradation can lead to false positives), or instability (degradation of the sensor during regeneration or storage).
View Article and Find Full Text PDF