Publications by authors named "Daniel Hirschstein"

Alzheimer's disease (AD) is the leading cause of dementia in older adults. Although AD progression is characterized by stereotyped accumulation of proteinopathies, the affected cellular populations remain understudied. Here we use multiomics, spatial genomics and reference atlases from the BRAIN Initiative to study middle temporal gyrus cell types in 84 donors with varying AD pathologies.

View Article and Find Full Text PDF

Biological aging can be defined as a gradual loss of homeostasis across various aspects of molecular and cellular function. Aging is a complex and dynamic process which influences distinct cell types in a myriad of ways. The cellular architecture of the mammalian brain is heterogeneous and diverse, making it challenging to identify precise areas and cell types of the brain that are more susceptible to aging than others.

View Article and Find Full Text PDF

The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.

View Article and Find Full Text PDF

Delineating the gene-regulatory programs underlying complex cell types is fundamental for understanding brain function in health and disease. Here, we comprehensively examined human brain cell epigenomes by probing DNA methylation and chromatin conformation at single-cell resolution in 517 thousand cells (399 thousand neurons and 118 thousand non-neurons) from 46 regions of three adult male brains. We identified 188 cell types and characterized their molecular signatures.

View Article and Find Full Text PDF

The human brain directs complex behaviors, ranging from fine motor skills to abstract intelligence, but the diversity of cell types that support these skills has not been fully described. In this work, we used single-nucleus RNA sequencing to systematically survey cells across the entire adult human brain. We sampled more than three million nuclei from approximately 100 dissections across the forebrain, midbrain, and hindbrain in three postmortem donors.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the cellular structure of the human cortex to define different cortical areas using single-cell transcriptomics.
  • Researchers performed RNA-sequencing across eight cortical areas and found consistent cellular makeup, but notable variations in the proportion of excitatory neuron subclasses, indicating differences in connectivity.
  • Findings include unique features in the primary visual cortex, such as changes in the ratio of excitatory to inhibitory neurons and an expansion of excitatory neurons in layer 4, suggesting a need for refined understanding of human cortical organization.
View Article and Find Full Text PDF

Single-cell transcriptomic studies have identified a conserved set of neocortical cell types from small postmortem cohorts. We extended these efforts by assessing cell type variation across 75 adult individuals undergoing epilepsy and tumor surgeries. Nearly all nuclei map to one of 125 robust cell types identified in the middle temporal gyrus.

View Article and Find Full Text PDF

Recent advances in single-cell transcriptomics have illuminated the diverse neuronal and glial cell types within the human brain. However, the regulatory programs governing cell identity and function remain unclear. Using a single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq), we explored open chromatin landscapes across 1.

View Article and Find Full Text PDF

Proper brain function requires the assembly and function of diverse populations of neurons and glia. Single cell gene expression studies have mostly focused on characterization of neuronal cell diversity; however, recent studies have revealed substantial diversity of glial cells, particularly astrocytes. To better understand glial cell types and their roles in neurobiology, we built a new suite of adeno-associated viral (AAV)-based genetic tools to enable genetic access to astrocytes and oligodendrocytes.

View Article and Find Full Text PDF
Article Synopsis
  • The brain of a mouse has millions of different cells, and scientists want to make a complete list of these cell types to understand how the brain works.
  • Researchers created a detailed map of these cells by studying around 7 million cells with a special technique that looks at their genes and how they are placed in the brain.
  • They discovered that there are many different types of cells in the brain, with some areas being very unique, like the dorsal part having fewer but more distinct types, while the ventral part has many similar types.
View Article and Find Full Text PDF
Article Synopsis
  • The isocortex and hippocampal formation (HPF) in mammals are crucial for functions like perception, cognition, and learning.
  • A study of approximately 1.3 million cells identified numerous types of glutamatergic and GABAergic neurons, challenging the idea that HPF has a simpler structure compared to the six-layered isocortex.
  • The findings reveal that both regions share similar circuit organization and highlight the complexity and variations of cell types within these brain areas, providing insights into their development and function.
View Article and Find Full Text PDF

Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected.

View Article and Find Full Text PDF

The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133 transcriptomic cell types by deep, single-cell RNA sequencing.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: