Publications by authors named "Daniel Henri Caignard"

In our constant search for new successors of agomelatine, we report herein a new series of compounds resulting from bioisosteric modulation of the naphthalene ring. The isoquinoline and tetrahydroisoquinoline derivatives were synthesized and pharmacologically evaluated. This isosteric replacement of the naphthalene group of agomelatine has led to potent agonist and partial agonist compounds with nanomolar melatonergic binding affinities.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers designed nitrogen heterocycles based on α-ethoxyphenylpropionic acid derivatives to target PPARα/γ receptors for treating type 2 diabetes (T2D).
  • Among the compounds tested, 6-Benzoyl-benzothiazol-2-one demonstrated the best results after modifications, leading to a specific stereoisomer with an excellent in vitro pharmacological profile.
  • This compound was identified as a potent full PPARγ agonist and a weak partial agonist for PPARα, showing effectiveness in reducing triglycerides, glucose, and insulin levels in ob/ob mice without causing significant weight gain, classifying it as a selective PPARγ modulator (SPPARγM).
View Article and Find Full Text PDF

A new family of melatonin receptor ligands, characterized by a tetrahydroquinoline (THQ) scaffold carrying an amide chain in position 3, was devised as conformationally constrained analogs of flexible N-anilinoethylamides previously developed. Molecular superposition models allowed to identify the patterns of substitution conferring high receptor binding affinity and to support the THQ ring as a suitable scaffold for the preparation of melatonin ligands. The biological activity of 3-acylamino-THQs was compared with that of the corresponding tetralin derivatives.

View Article and Find Full Text PDF

We recently reported a series of naphthofuranic compounds as constrained agomelatine analogues. Herein, in order to explore alternative ethyl amide side chain rigidification, naphthocyclopentane and quinolinocyclopentane derivatives with various acetamide modulations were synthesized and evaluated at both melatonin (MT, MT) and serotonin (5-HT) receptors. These modifications has led to compounds with promising dual affinity and high MTs receptors agonist activity.

View Article and Find Full Text PDF

A series of benzothiazol-2-one containing α-ethoxyphenylpropionic acid derivatives incorporating resveratrol or butein scaffolds were designed as fused full PPARγ agonist ligands and SIRT1-activating compounds for the treatment of type 2 diabetes (T2D) and its complications. Compound 14d displayed the best in vitro pharmacological profile with full PPARγ agonist activity (Emax = 98%, EC = 200 nM), SIRT1 enzymatic activation (+128%) and SGK1 expression inhibition (- 57%) which is known to limit side effects as fluid retention and body-weight gain. Compound 14d showed high efficacy in an ob/ob mice model with significant decreases in serum triglyceride, glucose and insulin levels but mostly with limited body-weight gain by mimicking calorie restriction (CR) and inhibiting SGK1 expression.

View Article and Find Full Text PDF

New series of melatonergic ligands issued from two methoxy-quinolinic scaffolds (2-MQ and 3-MQ), were designed and synthesized. Herein we report the synthetic scheme and pharmacological results of the new prepared compounds. Investigation of compound 11a, the strict 2-MQ analogue, revealed the promising potential of this series.

View Article and Find Full Text PDF

Following our research for new melatonergic ligands, herein we report the design, synthesis and biological evaluation of new series of naphthofuranic derivatives as MT1 and MT2 ligands. Binding affinity results of the prepared compounds revealed good binding affinities at both melatonin receptor subtypes. Particularly, compound 6a behaved as an MT1 partial agonist and MT2 full agonist and exhibited an excellent binding affinity at MT2 (Ki = 0.

View Article and Find Full Text PDF

We report herein an efficient synthesis of 2-substituted furo[3,2-b]pyridines and their biological evaluation as melatonin receptors ligands. The proposed eight-step sequence ending with a Suzuki coupling allowed a rapid access to various analogues. The steric hindrance and the conformation of the aryl group in C2-position were evaluated regarding the selectivity of the molecule for one of the two high affinity melatonin receptors as well as the activity profile of the compound.

View Article and Find Full Text PDF

Positive allosteric modulators of 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA)-type ionotropic glutamate receptors are promising compounds for treatment of neurological disorders, for example, Alzheimer's disease. Here, we report synthesis and pharmacological evaluation of a series of mono-, di-, or trialkyl-substituted 7-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides, comprising in total 16 new modulators. The trisubstituted compounds 7b, 7d, and 7e revealed potent activity (EC2× = 2.

View Article and Find Full Text PDF

Molecular superposition models guided the design of novel melatonin receptor ligands characterized by a 2-acylaminomethyltetrahydroquinoline scaffold. Starting from the structure of N-anilinoethylamide ligands, the flexible chain was conformationally constrained to reproduce the bioactive conformation of melatonin. Structure-activity relationships were investigated, focusing on the substituent at the nitrogen atom, the position of the methoxy group, and the replacement of the amide side chain by urea and thiourea groups.

View Article and Find Full Text PDF
Article Synopsis
  • A new family of melatonin-based compounds has been developed by replacing melatonin's acetamido group with various reversed amides and azoles, which include multiple five-membered heterocycles.
  • These compounds have been fully characterized at melatonin receptors (MT1R and MT2R), with their structures compared to melatonin to understand their bioactivity.
  • The new compounds were found to enhance the differentiation of rat neural stem cells into neuron-like cells, even more effectively than melatonin, indicating potential for future pharmacological research on neurogenesis.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the design and synthesis of new compounds that combine structures of melatonin and pinoline, both of which are related to serotonin.
  • The researchers conducted pharmacological evaluations on these new melatonin-pinoline hybrids to assess their effects on serotonin and melatonin receptors, as well as other biological activities like antioxidant potential and blood-brain barrier permeability.
  • Findings indicate that pinoline and a specific hybrid compound can promote neurogenesis and neuronal maturation in neural stem cells from adult rats, likely through their interaction with serotonin and melatonin pathways.
View Article and Find Full Text PDF

In this paper we report the investigation of C-3 and β-acetamide positions of agomelatine analogues. Concomitant insertion of a hydroxymethyl in the β-acetamide position and aliphatic groups in C-3 position produced a positive effect on both melatonin (MT1, MT2) and serotonin (5-HT2C) binding affinities. In particular, the allyl 6b and ethyl 15a represented the more interesting compounds of this series.

View Article and Find Full Text PDF

Hexahydroindenopyridine (HHIP) is an interesting tricyclic piperidine nucleus that is structurally related to melatonin, a serotonin-derived neurohormone. Melatonin receptor ligands have applications in several cellular, neuroendocrine and neurophysiological disorders, including depression and/or insomnia. We report herein an efficient two-step method to prepare new HHIP via enamine C-alkylation-cyclization.

View Article and Find Full Text PDF

Hexahydroindenopyridine (HHIP) is an interesting heterocyclic framework that contains an indene core similar to ramelteon. This type of tricyclic piperidines aroused our interest as potential melatoninergic ligands. Melatonin receptor ligands have applications in insomnia and depression.

View Article and Find Full Text PDF

Herein we describe the synthesis of novel tricyclic analogues issued from the rigidification of the methoxy group of the benzofuranic analogue of melatonin as MT1 and MT2 ligands. Most of the synthesized compounds displayed high binding affinities at MT1 and MT2 receptors subtypes. Compound 6b (MT1, Ki=0.

View Article and Find Full Text PDF

On the basis of the results obtained in previous series of AMPA potentiators belonging to 3,4-dihydro-2H-benzo- and 3,4-dihydro-2H-pyrido-1,2,4-thiadiazine 1,1-dioxides, the present work focuses on the design of original isosteric 3,4-dihydro-2H-thieno-1,2,4-thiadiazine 1,1-dioxides. Owing to the sulfur position, three series of compounds were developed and their activity as AMPA potentiators was characterized. In each of the developed series, potent compounds were discovered.

View Article and Find Full Text PDF

Agomelatine is a naphthalenic analogue of melatonin that is in clinical use for the treatment of major depressive disorders. Interestingly, while agomelatine exhibits potent affinity for melatonin receptors, it binds with only moderate affinity to the serotonin 5-HT2C receptor. Optimization of agomelatine toward this target could further potentiate its clinical efficacy.

View Article and Find Full Text PDF

Melatonin receptors have been studied for several decades. The low expression of the receptors in tissues led the scientific community to find a substitute for the natural hormone melatonin, the agonist 2-[125I]-iodomelatonin. Using the agonist, several hundreds of studies were conducted, including the discovery of agonists and antagonists for the receptors and minute details about their molecular behavior.

View Article and Find Full Text PDF

N-(Arylcyclopropyl)acetamides and N-(arylvinyl)acetamides or methyl ureas have been prepared as constrained analogues of melatonin. The affinity of these new compounds for chicken brain melatonin receptors and recombinant human MT(1) and MT(2) receptors was evaluated using 2-[(125)I]-iodomelatonin as radioligand. Strict ethylenic or cyclopropyl analogues of the commercialized agonist agomelatine (Valdoxan®) were equipotent to agomelatine in binding bioassays.

View Article and Find Full Text PDF

Novel conformationally restricted analogues of agomelatine were synthesized and pharmacologically evaluated at MT₁ and MT₂ melatoninergic receptors. Replacement of the N-acetyl side chain of agomelatine by oxathiadiazole-2-oxide (compound 3), oxadiazole-5(4H)-one (compound 4), tetrazole (compound 5), oxazolidinone (compound 7a), pyrrolidinone (compound 7b), imidazolidinedione (compound 12), thiazole (compounds 13 and 14) and isoxazole moieties (compound 15) led to a decrease of the melatoninergic binding affinities, particularly at MT₁. Compounds 7a and 7b exhibiting nanomolar affinity towards the MT₂ receptors subtypes have shown the most interesting pharmacological results of this series with the appearance of a weak MT₂-selectivity.

View Article and Find Full Text PDF

Compounds that simultaneously activate peroxisome proliferator-activated receptor (PPAR) subtypes α and γ have the potential to effectively treat dyslipidemia and type 2 diabetes (T2D) in a single pharmaceutically active molecule. The frequently observed side effects of selective PPARγ agonists, such as edema and weight gain, were expected to be overcome by using additive PPARα activity, leading to dual PPARα/γ agonists with balanced activity for both subtypes. Herein we report the discovery, synthesis, and optimization of a new series of α-ethoxyphenylpropionic acid bearing 5- or 6-substituted indoles.

View Article and Find Full Text PDF

In order to identify new leads for the treatment of type 2 diabetes, polyenic molecules A and B derived from nipecotic acid and dienol derivatives C have been prepared and their effect on PPARs transcriptional activity evaluated and compared to that of rosiglitazone, WY14,643 and GW501516. Among the synthesized compounds, dienol 39 is the most active, increasing WY14,643 PPARα response and demonstrating partial agonist properties on rosiglitazone PPARγ.

View Article and Find Full Text PDF

As part of our ongoing interest in developing new melatoninergic ligands bearing the same pharmacological profile as agomelatine, we focused our attention on this compound as a lead. Several chemical modifications have been performed on positions C-3 and 8 of the naphthalene ring determined as primary targets for the agomelatine metabolism. Herein we report the modulation of the positions C-3 and 7 in addition of the amide side chain because of this later prominent role in the affinity profile of such ligands.

View Article and Find Full Text PDF

A series of N-(2-(5-fluoro-2-(4-fluorophenylthio)benzo[b]thiophen-3-yl)ethyl)acylamides was synthesized and evaluated for binding affinity and intrinsic activity at melatonin receptors. The affinity of each compound for the melatonin receptors was determined by binding studies on cloned human MT1 and MT2 receptors expressed in CHO cells. Agonist and antagonist potency was measured on the [35S]GTPγS binding assay for the most interesting compounds.

View Article and Find Full Text PDF