Publications by authors named "Daniel Healion"

Nonlinear all-X-ray signals that involve large core-atom separation compared to the X-ray wavelengths may not be described by the dipole approximation since they contain additional phase factors. Expressions for the rotationally averaged 2D X-ray photon echo signals from randomly oriented systems that take this position-dependent phase into account for arbitrary ratio between the core separation and the resonant wavelength are presented. Application is made to the Se K-edge of a selenium dipeptide system.

View Article and Find Full Text PDF

Attosecond Stimulated X-ray Raman Spectroscopy (SXRS) is a promising technique for investigating molecular electronic structure and photochemical processes with high spatial and temporal resolution. We present a theoretical study of SXRS from multiple core excitation sites of the same element. Two issues are addressed: interference between pathways contributing the signals from different sites; and how nuclear vibrations influence the signals.

View Article and Find Full Text PDF

Understanding the excitation energy transfer mechanism in multiporphyrin arrays is key for designing artificial light-harvesting devices and other molecular electronics applications. Simulations of the stimulated X-ray Raman spectroscopy signals of a Zn/Ni porphyrin heterodimer induced by attosecond X-ray pulses show that these signals can directly reveal electron-hole pair motions. These dynamics are visualized by a natural orbital decomposition of the valence electron wavepackets.

View Article and Find Full Text PDF

We show that broadband x-ray pulses can create wavepackets of valence electrons and holes localized in the vicinity of a selected atom (nitrogen, oxygen or sulfur in cysteine) by stimulated resonant Raman scattering. The subsequent dynamics reveals highly correlated motions of entangled electrons and hole quasiparticles. This information goes beyond the time-dependent total charge density derived from x-ray diffraction.

View Article and Find Full Text PDF

Several nonlinear spectroscopy experiments which employ broadband x-ray pulses to probe the coupling between localized core and delocalized valence excitation are simulated for the amino acid cysteine at the K-edges of oxygen and nitrogen and the K- and L-edges of sulfur. We focus on two-dimensional (2D) and 3D signals generated by two- and three-pulse stimulated x-ray Raman spectroscopy (SXRS) with frequency-dispersed probe. We show how the four-pulse x-ray signals [Formula: see text] and [Formula: see text] can give new 3D insight into the SXRS signals.

View Article and Find Full Text PDF

The attosecond, time-resolved X-ray double-quantum-coherence four-wave mixing signals of formamide at the nitrogen and oxygen K-edges are simulated using restricted excitation window time-dependent density functional theory and the excited core hole approximation. These signals, induced by core exciton coupling, are particularly sensitive to the level of treatment of electron correlation, thus providing direct experimental signatures of electron and core-hole many-body effects and a test of electronic structure theories.

View Article and Find Full Text PDF

New free-electron laser and high-harmonic generation X-ray light sources are capable of supplying pulses short and intense enough to perform resonant nonlinear time-resolved experiments in molecules. Valence-electron motions can be triggered impulsively by core excitations and monitored with high temporal and spatial resolution. We discuss possible experiments that employ attosecond X-ray pulses to probe the quantum coherence and correlations of valence electrons and holes, rather than the charge density alone, building on the analogy with existing studies of vibrational motions using femtosecond techniques in the visible regime.

View Article and Find Full Text PDF

We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen, and sulfur K and L(2,3) edges. Comparison of the simulated XANES signals with experiment shows that the restricted window time-dependent density functional theory is more accurate and computationally less expensive than the static exchange method. Simulated RIXS and 1D SXRS signals give some insights into the correlation of different excitations in the molecule.

View Article and Find Full Text PDF

Expressions for the two-dimensional stimulated x-ray Raman spectroscopy (2D-SXRS) signal obtained using attosecond x-ray pulses are derived. The 1D- and 2D-SXRS signals are calculated for trans-N-methyl acetamide (NMA) with broad bandwidth (181 as, 14.2 eV FWHM) pulses tuned to the oxygen and nitrogen K-edges.

View Article and Find Full Text PDF

The stimulated Raman component of the pump-probe spectrum of trans-N-methylacetamide obtained in response to two soft x-ray pulses is calculated by treating the core excitations at the Hartree-Fock static-exchange level. The signal reveals the dynamics of valence-electron wave packets prepared and detected in the vicinity of a selected atom (either nitrogen or oxygen). The evolving electronic charge density as well as electronic coherence of the doorway and the window created by the two pulses are visualized using a time-dependent basis set of natural orbitals, which reveals that the wave packets consist of several entangled valence particle-hole pairs.

View Article and Find Full Text PDF

Two-dimensional X-ray correlation spectroscopy (2DXCS) signals of the isolated DNA bases and Watson-Crick base pairs which contain multiple absorbing nitrogen atoms are calculated. Core-hole excited states are calculated using density functional theory with the B3LYP functional and 6-311G** basis set. Sum over states calculations of the signals reveal changes in cross-peak intensities between hydrogen-bonded and stacked base pairs.

View Article and Find Full Text PDF