The transmission of multiple independent optical signals through a multimode fiber is accomplished using wavefront shaping in order to compensate for the light distortion during the propagation within the fiber. Our methodology is based on digital optical phase conjugation employing only a single spatial light modulator, where the optical wavefront is individually modulated at different regions of the modulator, one region per light signal. Digital optical phase conjugation approaches are considered to be faster than other wavefront shaping approaches, where (for example) a complete determination of the wave propagation behavior of the fiber is performed.
View Article and Find Full Text PDFMultimode fibers are attractive for a variety of applications such as communication engineering and biophotonics. However, a major hurdle for the optical transmission through multimode fibers is the inherent mode mixing. Although an image transmission was successfully accomplished using wavefront shaping, the image information was not transmitted individually for each of the independent pixels.
View Article and Find Full Text PDFSpectroscopic methods are established tools for nonintrusive measurements of flow velocity. However, those methods are either restricted by measuring pointwise or with low measurement rates of several hertz. To investigate fast unsteady phenomena, e.
View Article and Find Full Text PDFTo reduce the noise of machines such as aircraft engines, the development and propagation of sound has to be investigated. Since the applicability of microphones is limited due to their intrusiveness, contactless measurement techniques are required. For this reason, the present study describes an optical method based on the Doppler effect and its application for acoustic particle velocity (APV) measurements.
View Article and Find Full Text PDFDoppler global velocimetry (DGV) is considered to be a useful optical measurement tool for acquiring flow velocity fields. Often near-wall measurements are required, which is still challenging due to errors resulting from background scattering and multiple-particle scattering. Since the magnitudes of both errors are unknown so far, they are investigated by scattering simulations and experiments.
View Article and Find Full Text PDF