Publications by authors named "Daniel Halligan"

Introduction: Obstructive sleep apnoea (OSA), a condition characterised by intermittent hypoxia and reoxygenation during sleep, is associated with an increased risk of adverse pregnancy outcomes including gestational diabetes and hypertensive disorders of pregnancy. The biological mechanisms of these associations are poorly understood. The impact of OSA on placental function has not been well characterised.

View Article and Find Full Text PDF

Prostate cancer is the second leading cause of cancer-related death in men. Despite having a relatively lower tumor mutational burden than most tumor types, multiple gene fusions such as have been characterized and linked to more aggressive disease. Individual tumor samples have been found to contain multiple fusions, and it remains unknown whether these fusions increase tumor immunogenicity.

View Article and Find Full Text PDF

Purpose: Emerging data suggest immune checkpoint inhibitors have reduced efficacy in heavily pretreated triple-negative breast cancers (TNBC), but underlying mechanisms are poorly understood. To better understand the phenotypic evolution of TNBCs, we studied the genomic and transcriptomic profiles of paired tumors from patients with TNBC.

Experimental Design: We collected paired primary and metastatic TNBC specimens from 43 patients and performed targeted exome sequencing and whole-transcriptome sequencing.

View Article and Find Full Text PDF

Introduction: Accurate prognostication is difficult in malignant pleural mesothelioma (MPM). We developed a set of robust computational models to quantify the prognostic value of routinely available clinical data, which form the basis of published MPM prognostic models.

Methods: Data regarding 269 patients with MPM were allocated to balanced training (n=169) and validation sets (n=100).

View Article and Find Full Text PDF

Glucocorticoids are potent inhibitors of angiogenesis in the rodent in vivo and in vitro but the mechanism by which this occurs has not been determined. Administration of glucocorticoids is used to treat a number of conditions in horses but the angiogenic response of equine vessels to glucocorticoids and, therefore, the potential role of glucocorticoids in pathogenesis and treatment of equine disease, is unknown. This study addressed the hypothesis that glucocorticoids would be angiostatic both in equine and murine blood vessels.

View Article and Find Full Text PDF

Therapeutic antibodies that block the programmed death-1 (PD-1)-programmed death-ligand 1 (PD-L1) pathway can induce robust and durable responses in patients with various cancers, including metastatic urothelial cancer. However, these responses only occur in a subset of patients. Elucidating the determinants of response and resistance is key to improving outcomes and developing new treatment strategies.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are one of the most intensively studied groups of noncoding elements. Debate continues over what proportion of lncRNAs are functional or merely represent transcriptional noise. Although characterization of individual lncRNAs has identified approximately 200 functional loci across the Eukarya, general surveys have found only modest or no evidence of long-term evolutionary conservation.

View Article and Find Full Text PDF

The brown rat, Rattus norvegicus, is both a notorious pest and a frequently used model in biomedical research. By analyzing genome sequences of 12 wild-caught brown rats from their presumed ancestral range in NE China, along with the sequence of a black rat, Rattus rattus, we investigate the selective and demographic forces shaping variation in the genome. We estimate that the recent effective population size (Ne) of this species = [Formula: see text], based on silent site diversity.

View Article and Find Full Text PDF

We set out to investigate potential differences and similarities between the selective forces acting upon the coding and noncoding regions of five different sets of genes defined according to functional and evolutionary criteria: 1) two reference gene sets presenting accelerated and slow rates of protein evolution (the Complement and Actin pathways); 2) a set of genes with evidence of accelerated evolution in at least one of their introns; and 3) two gene sets related to neurological function (Parkinson's and Alzheimer's diseases). To that effect, we combine human-chimpanzee divergence patterns with polymorphism data obtained from target resequencing 20 central chimpanzees, our closest relatives with largest long-term effective population size. By using the distribution of fitness effect-alpha extension of the McDonald-Kreitman test, we reproduce inferences of rates of evolution previously based only on divergence data on both coding and intronic sequences and also obtain inferences for other classes of genomic elements (untranslated regions, promoters, and conserved noncoding sequences).

View Article and Find Full Text PDF

Genetic recombination associated with sexual reproduction increases the efficiency of natural selection by reducing the strength of Hill-Robertson interference. Such interference can be caused either by selective sweeps of positively selected alleles or by background selection (BGS) against deleterious mutations. Its consequences can be studied by comparing patterns of molecular evolution and variation in genomic regions with different rates of crossing over.

View Article and Find Full Text PDF

The causes of the large effect of the X chromosome in reproductive isolation and speciation have long been debated. The faster-X hypothesis predicts that X-linked loci are expected to have higher rates of adaptive evolution than autosomal loci if new beneficial mutations are on average recessive. Reproductive isolation should therefore evolve faster when contributing loci are located on the X chromosome.

View Article and Find Full Text PDF

The contribution of regulatory versus protein change to adaptive evolution has long been controversial. In principle, the rate and strength of adaptation within functional genetic elements can be quantified on the basis of an excess of nucleotide substitutions between species compared to the neutral expectation or from effects of recent substitutions on nucleotide diversity at linked sites. Here, we infer the nature of selective forces acting in proteins, their UTRs and conserved noncoding elements (CNEs) using genome-wide patterns of diversity in wild house mice and divergence to related species.

View Article and Find Full Text PDF

Background: Modern biological science generates a vast amount of data, the analysis of which presents a major challenge to researchers. Data are commonly represented in tables stored as plain text files and require line-by-line parsing for analysis, which is time consuming and error prone. Furthermore, there is no simple means of indexing these files so that rows containing particular values can be quickly found.

View Article and Find Full Text PDF

We employed deep genome sequencing of two parents and 12 of their offspring to estimate the mutation rate per site per generation in a full-sib family of Drosophila melanogaster recently sampled from a natural population. Sites that were homozygous for the same allele in the parents and heterozygous in one or more offspring were categorized as candidate mutations and subjected to detailed analysis. In 1.

View Article and Find Full Text PDF

Sequencing errors and random sampling of nucleotide types among sequencing reads at heterozygous sites present challenges for accurate, unbiased inference of single-nucleotide polymorphism genotypes from high-throughput sequence data. Here, we develop a maximum-likelihood approach to estimate the frequency distribution of the number of alleles in a sample of individuals (the site frequency spectrum), using high-throughput sequence data. Our method assumes binomial sampling of nucleotide types in heterozygotes and random sequencing error.

View Article and Find Full Text PDF

There are many more selectively constrained noncoding than coding nucleotides in the mammalian genome, but most mammalian noncoding DNA is subject to weak selection, on average. One of the most striking discoveries to have emerged from comparisons among mammalian genomes is the hundreds of noncoding elements of more than 200 bp in length that show absolute conservation among mammalian orders. These elements represent the tip of the iceberg of a much larger class of conserved noncoding elements (CNEs).

View Article and Find Full Text PDF

We develop an inference method that uses approximate Bayesian computation (ABC) to simultaneously estimate mutational parameters and selective constraint on the basis of nucleotide divergence for protein-coding genes between pairs of species. Our simulations explicitly model CpG hypermutability and transition vs. transversion mutational biases along with negative and positive selection operating on synonymous and nonsynonymous sites.

View Article and Find Full Text PDF

During the past two decades, evidence has accumulated of adaptive evolution within protein-coding genes in a variety of species. However, with the exception of Drosophila and humans, little is known about the extent of adaptive evolution in noncoding DNA. Here, we study regions upstream and downstream of protein-coding genes in the house mouse Mus musculus castaneus, a species that has a much larger effective population size (N(e)) than humans.

View Article and Find Full Text PDF

The relative contributions of neutral and adaptive substitutions to molecular evolution has been one of the most controversial issues in evolutionary biology for more than 40 years. The analysis of within-species nucleotide polymorphism and between-species divergence data supports a widespread role for adaptive protein evolution in certain taxa. For example, estimates of the proportion of adaptive amino acid substitutions (alpha) are 50% or more in enteric bacteria and Drosophila.

View Article and Find Full Text PDF

Contrary to the classical view, a large amount of non-coding DNA seems to be selectively constrained in Drosophila and other species. Here, using Drosophila miranda BAC sequences and the Drosophila pseudoobscura genome sequence, we aligned coding and non-coding sequences between D. pseudoobscura and D.

View Article and Find Full Text PDF

Protein-coding sequences make up only about 1% of the mammalian genome. Much of the remaining 99% has been long assumed to be junk DNA, with little or no functional significance. Here, we show that in hominids, a group with historically low effective population sizes, all classes of noncoding DNA evolve more slowly than ancestral transposable elements and so appear to be subject to significant evolutionary constraints.

View Article and Find Full Text PDF

Variation from new mutations is important for several questions in quantitative genetics. Key parameters are the genomic mutation rate and the distribution of effects of mutations (DEM), which determine the amount of new quantitative variation that arises per generation from mutation (V(M)). Here, we review methods and empirical results concerning mutation accumulation (MA) experiments that have shed light on properties of mutations affecting quantitative traits.

View Article and Find Full Text PDF

Sex allocation theory has proved extremely successful at predicting when individuals should adjust the sex of their offspring in response to environmental conditions. However, we know rather little about the underlying genetics of sex ratio or how genetic architecture might constrain adaptive sex-ratio behavior. We examined how mutation influenced genetic variation in the sex ratios produced by the parasitoid wasp Nasonia vitripennis.

View Article and Find Full Text PDF

Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution.

View Article and Find Full Text PDF

Interspecies divergence of orthologous transposable element remnants is often assumed to be simply due to genetic drift of neutral mutations that occurred after the divergence of the species. However, divergence may also be affected by other factors, such as variation in the mutation rate, ancestral polymorphisms, or selection. Here we attempt to determine the impact of these forces on divergence of three classes of sites that are often assumed to be selectively unconstrained (INE-1 TE remnants, sites within short introns, and fourfold degenerate sites) in two different pairwise comparisons of Drosophila (D.

View Article and Find Full Text PDF