Ultrafast high-brightness X-ray pulses have proven invaluable for a broad range of research. Such pulses are typically generated via synchrotron emission from relativistic electron bunches using large-scale facilities. Recently, significantly more compact X-ray sources based on laser-wakefield accelerated (LWFA) electron beams have been demonstrated.
View Article and Find Full Text PDFGamma-ray photons with energy >9 MeV were produced when second-harmonic-generated laser light (3 eV) inverse-Compton-scattered from a counterpropagating relativistic (~450 MeV) laser-wakefield-accelerated electron beam. Two laser pulses from the same laser system were used: one to accelerate electrons and one to scatter. Since the two pulses play very different roles in the γ-ray generation process, and thus have different requirements, a novel laser system was developed.
View Article and Find Full Text PDF