Publications by authors named "Daniel Haack"

Cryo-EM structure determination of protein-free RNAs has remained difficult with most attempts yielding low to moderate resolution and lacking nucleotide-level detail. These difficulties are compounded for small RNAs as cryo-EM is inherently more difficult for lower molecular weight macromolecules. Here we present a strategy for fusing small RNAs to a group II intron that yields high resolution structures of the appended RNA.

View Article and Find Full Text PDF

Cryo-EM structure determination of protein-free RNAs has remained difficult with most attempts yielding low to moderate resolution and lacking nucleotide-level detail. These difficulties are compounded for small RNAs as cryo-EM is inherently more difficult for lower molecular weight macromolecules. Here we present a strategy for fusing small RNAs to a group II intron that yields high resolution structures of the appended RNA, which we demonstrate with the 86-nucleotide thiamine pyrophosphate (TPP) riboswitch, and visualizing the riboswitch ligand binding pocket at 2.

View Article and Find Full Text PDF

Branching is a critical step in RNA splicing that is essential for 5' splice site selection. Recent spliceosome structures have led to competing models for the recognition of the invariant adenosine at the branch point. However, there are no structures of any splicing complex with the adenosine nucleophile docked in the active site and positioned to attack the 5' splice site.

View Article and Find Full Text PDF

Chung et al. recently presented the structure of a primitive group IIC intron with its DNA target, which reveals the structural requirements that this class of intron uses to recognize a transcription terminator stem loop at the DNA level for insertion during retrotransposition.

View Article and Find Full Text PDF

Recent cryo-EM structures of a group II intron caught in the process of invading DNA have given new insight into the mechanisms of both splicing and retrotransposition. Conformational dynamics involving the branch-site helix domain VI are responsible for substrate exchange between the two steps of splicing. These structural rearrangements have strong parallels with the movement of the branch-site helix in the spliceosome during catalysis.

View Article and Find Full Text PDF

Free-electron lasers (FELs) based on superconducting accelerator technology and storage ring facilities operate with bunch repetition rates in the MHz range, and the need arises for bunch-by-bunch electron and photon diagnostics. For photon-pulse-resolved measurements of spectral distributions, fast one-dimensional profile monitors are required. The linear array detector KALYPSO (KArlsruhe Linear arraY detector for MHz-rePetition rate SpectrOscopy) has been developed for electron bunch or photon pulse synchronous read-out with frame rates of up to 2.

View Article and Find Full Text PDF

Group II introns are a class of retroelements that invade DNA through a copy-and-paste mechanism known as retrotransposition. Their coordinated activities occur within a complex that includes a maturase protein, which promotes splicing through an unknown mechanism. The mechanism of splice site exchange within the RNA active site during catalysis also remains unclear.

View Article and Find Full Text PDF