Publications by authors named "Daniel H Paulus"

Attenuation correction (AC) is an essential step in the positron emission tomography (PET) data reconstruction process to provide accurate and quantitative PET images. The introduction of PET/magnetic resonance (MR) hybrid systems has raised new challenges but also possibilities regarding PET AC. While in PET/computed tomography (CT) imaging, CT images can be converted to attenuation maps, MR images in PET/MR do not provide a direct relation to attenuation.

View Article and Find Full Text PDF

Modern radiation therapy (RT) treatment planning is based on multimodality imaging. With the recent availability of whole-body PET/MR hybrid imaging new opportunities arise to improve target volume delineation in RT treatment planning. This, however, requires dedicated RT equipment for reproducible patient positioning on the PET/MR system, which has to be compatible with MR and PET imaging.

View Article and Find Full Text PDF

Background: In integrated PET/MR hybrid imaging the evaluation of PET performance characteristics according to the NEMA standard NU 2-2007 is challenging because of incomplete MR-based attenuation correction (AC) for phantom imaging. In this study, a strategy for CT-based AC of the NEMA image quality (IQ) phantom is assessed. The method is systematically evaluated in NEMA IQ phantom measurements on an integrated PET/MR system.

View Article and Find Full Text PDF

Unlabelled: The aim of this study was to systematically assess the quantitative and qualitative impact of including point-spread function (PSF) modeling into the process of iterative PET image reconstruction in integrated PET/MR imaging.

Methods: All measurements were performed on an integrated whole-body PET/MR system. Three substudies were performed: an (18)F-filled Jaszczak phantom was measured, and the impact of including PSF modeling in ordinary Poisson ordered-subset expectation maximization reconstruction on quantitative accuracy and image noise was evaluated for a range of radial phantom positions, iteration numbers, and postreconstruction smoothing settings; 5 representative datasets from a patient population (total n = 20, all oncologic (18)F-FDG PET/MR) were selected, and the impact of PSF on lesion activity concentration and image noise for various iteration numbers and postsmoothing settings was evaluated; and for all 20 patients, the influence of PSF modeling was investigated on visual image quality and number of detected lesions, both assessed by clinical experts.

View Article and Find Full Text PDF

Unlabelled: In routine whole-body PET/MR hybrid imaging, attenuation correction (AC) is usually performed by segmentation methods based on a Dixon MR sequence providing up to 4 different tissue classes. Because of the lack of bone information with the Dixon-based MR sequence, bone is currently considered as soft tissue. Thus, the aim of this study was to evaluate a novel model-based AC method that considers bone in whole-body PET/MR imaging.

View Article and Find Full Text PDF

Unlabelled: With the replacement of ionizing CT by MR imaging, integrated PET/MR in selected clinical applications may reduce the overall patient radiation dose when compared with PET/CT. Further potential for radiotracer dose reduction, while maintaining PET image quality (IQ) in integrated PET/MR, may be achieved by increasing the PET acquisition duration to match the longer time needed for MR data acquisition. To systematically verify this hypothesis under controlled conditions, this dose-reduction study was performed using a standardized phantom following the National Electrical Manufacturers Association (NEMA) IQ protocol.

View Article and Find Full Text PDF

Purpose: Multimodality imaging has become an important adjunct of state-of-the-art radiation therapy (RT) treatment planning. Recently, simultaneous PET/MR hybrid imaging has become clinically available and may also contribute to target volume delineation and biological individualization in RT planning. For integration of PET/MR hybrid imaging into RT treatment planning, compatible dedicated RT devices are required for accurate patient positioning.

View Article and Find Full Text PDF

Purpose: Flexible radiofrequency (RF) surface coils used in simultaneous PET/MR imaging are currently disregarded in PET attenuation correction (AC) since their position and individual geometry are unknown in whole-body patient scans. The attenuation of PET emission data due to the presence of RF surface coils has been investigated by several research groups but so far no automatic approach for the incorporation of RF surface coils into PET AC has been described. In this work, an algorithm is presented and evaluated which automatically determines the position of multiple RF surface coils and corrects for their attenuation of the PET emission data.

View Article and Find Full Text PDF

Purpose: With the recent introduction of integrated whole-body hybrid positron emission tomography/magnetic resonance (PET/MR) scanners, simultaneous PET/MR breast imaging appears to be a potentially attractive new clinical application. In this study, the technical groundwork toward performing simultaneous PET/MR breast imaging was developed and systematically evaluated in phantom experiments and breast cancer patient hybrid imaging.

Methods: Measurements were performed on a state-of-the-art whole-body simultaneous PET/MR system (Biograph mMR, Siemens AG, Erlangen, Germany).

View Article and Find Full Text PDF

Purpose: In simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging, local receiver surface radiofrequency (RF) coils are positioned in the field-of-view (FOV) of the PET detector during PET/MR data acquisition and potentially attenuate the PET signal. For flexible body RF surface coils placed on top of the patient's body, MR-based attenuation correction (AC) is an unsolved problem since the RF coils are not inherently visible in MR images and their individual position in the FOV is patient specific and not known a priori. The aim of this work was to quantify the effect of local body RF coils used in the Biograph mMR hybrid PET/MR system on PET emission data and to present techniques for MR-based position determination of these specific local RF coils.

View Article and Find Full Text PDF

Purpose: With the recent introduction of integrated whole-body hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) scanners, the need for data collection strategies arises that provide time efficient, simultaneous, and easy acquisition of PET and MRI data. One approach is to develop acquisition protocols with continuous table motion. In this work, a reconstruction technique to allow for reconstruction of PET data that were acquired with continuous table motion on an integrated hybrid whole-body PET/MRI scanner is presented and evaluated.

View Article and Find Full Text PDF