Neurotrophins (NTs) are secretory proteins that bind to target receptors and influence many cellular functions, such as cell survival and cell death in neurons. The mammalian NT brain-derived neurotrophic factor (matBDNF) is the C-terminal mature form released by cleavage from the proBDNF precursor. The binding of matBDNF to the tyrosine kinase receptor B (TrkB) activates different signaling cascades and leads to neuron survival and plasticity, while the interaction of proBDNF with the p75 NT receptor (p75NTR)/sortilin receptor complex has been highly involved in apoptosis.
View Article and Find Full Text PDFAstrocytes are a heterogeneous population of glial cells that react to brain insults through a process referred to as astrogliosis. Reactive astrocytes are characterized by an increase in proliferation, size, migration to the injured zone and release of a plethora of chemical mediators such as NGF and BDNF. The aim of this study was to determine whether there are brain region-associated responses of astrocytes to an injury and to the neurotrophins NGF and BDNF.
View Article and Find Full Text PDFPsychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant's effects on dendritic spines in hippocampus remain unknown.
View Article and Find Full Text PDFRecent findings indicate that the mechanisms that drive reshaping of the nervous system are aberrantly activated in epilepsy and several neurodegenerative diseases. The recurrent seizures in epilepsy, particularly in the condition called status epilepticus, can cause permanent neurological damage, resulting in cognitive dysfunction and other serious neurological conditions. In this study, we used an in vitro model of status epilepticus to examine the role of calpain in the degeneration of hippocampal neurons.
View Article and Find Full Text PDFThere is a great deal of evidence showing the capacity of physical exercise to enhance cognitive function, reduce anxiety and depression, and protect the brain against neurodegenerative disorders. Although the effects of exercise are well documented in the mature brain, the influence of exercise in the developing brain has been poorly explored. Therefore, we investigated the morphological and functional hippocampal changes in adult rats submitted to daily treadmill exercise during the adolescent period.
View Article and Find Full Text PDFIn primary cultures of mesencephalon small-conductance calcium-activated potassium channels (SK) are expressed in dopaminergic neurons. We characterized SK-mediated currents (I(SK)) in this system and evaluated their role on homeostasis against excitotoxicity. I(SK) amplitude was reduced by the glutamatergic agonist AMPA through a reduction in SK channel number in the membrane.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) is involved in many aspects of neuronal biology and hippocampal physiology. Status epilepticus (SE) is a condition in which prolonged seizures lead to neuronal degeneration. SE-induced in rodents serves as a model of Temporal Lobe Epilepsy with hippocampal sclerosis, the most frequent epilepsy in humans.
View Article and Find Full Text PDFEnriched environment (EE) is neuroprotective in several animal models of neurodegeneration. It stimulates the expression of trophic factors and modifies the astrocyte cell population which has been said to exert neuroprotective effects. We have investigated the effects of EE on 6-hydroxydopamine (6-OHDA)-induced neuronal death after unilateral administration to the medial forebrain bundle, which reaches 85-95% of dopaminergic neurons in the substantia nigra after 3 weeks.
View Article and Find Full Text PDFElectroconvulsive shock (ECS) improves motor function in Parkinson's disease. In rats, ECS stimulates the expression of various factors some of which have been proposed to exert neuroprotective actions. We have investigated the effects of ECS on 6-hydroxydopamine (6-OHDA)-injected rats.
View Article and Find Full Text PDFA distinct subpopulation of rat dorsal root sensory (DRG) neurons, termed P-neurons, switch their trophic requirements for survival during development from nerve growth factor (NGF) at embryonic stages to basic fibroblast growth factor (bFGF) just after birth. We investigated in cultured P-neurons the intracellular signaling pathways mediating survival before and after this switch. The NGF-induced survival was completely blocked by either wortmannin (100 nM) or PD98059 (25-50 nM), which selectively inhibit the phosphatidylinositol 3-kinase-AKT (PI3 kinase-AKT) and mitogen-activated kinase kinase extracellular regulated kinase (MEK-ERKs) pathways, respectively.
View Article and Find Full Text PDFWe describe a new molecular mechanism of cell death by excitotoxicity mediated through nuclear transcription factor kappa B (NF kappa B) in rat embryonic cultures of dopaminergic neurons. Treatment of mesencephalic cultures with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) resulted in a number of changes that occurred selectively in dopaminergic neurons, including persistent elevation in intracellular Ca(2+) monitored with Fura-2, and a significant increase in intramitochondrial oxidation of dihydrorhodamine 123, probably associated with transient increase of mitochondrial permeability, cytochrome c release, nuclear translocation of NF kappa B, and transcriptional activation of the oncogene p53. Interruption of any of these steps by specific antagonists prevented neurite pruning and programmed cell death.
View Article and Find Full Text PDF