Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2015
Nondestructive microscale investigation of objects is an invaluable tool in life and materials sciences. Currently, such investigation is mainly performed with X-ray laboratory systems, which are based on absorption-contrast imaging and cannot access the information carried by the phase of the X-ray waves. The phase signal is, nevertheless, of great value in X-ray imaging as it is complementary to the absorption information and in general more sensitive to visualize features with small density differences.
View Article and Find Full Text PDFThe speckle-based scanning method for x-ray phase-contrast imaging is implemented with a liquid-metal-jet source. Using the two-dimensional scanning technique, the phase shift introduced by the object is retrieved in both transverse orientations, and the limitations on spatial resolution inherent to the speckle-tracking technique are avoided. This method opens up possibilities of new high-resolution multimodal applications for lab-based phase-contrast x-ray imaging.
View Article and Find Full Text PDFWe demonstrate that nanoparticle x-ray fluorescence computed tomography in mouse-sized objects can be performed with very high spatial resolution at acceptable dose and exposure times with a compact laboratory system. The method relies on the combination of the 24 keV line-emission from a high-brightness liquid-metal-jet x-ray source, pencil-beam-forming x-ray optics, photon-counting energy-dispersive detection, and carefully matched (Mo) nanoparticles. Phantom experiments and simulations show that the arrangement significantly reduces Compton background and allows 100 μm detail imaging at dose and exposure times compatible with small-animal experiments.
View Article and Find Full Text PDFPurpose: Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast.
View Article and Find Full Text PDFIn-line phase-contrast X-ray imaging provides images where both absorption and refraction contribute. For quantitative analysis of these images, the phase needs to be retrieved numerically. There are many phase-retrieval methods available.
View Article and Find Full Text PDF