Publications by authors named "Daniel Goldberg-Zimring"

Objective: To determine the interrelationships between MRI-defined lesion and atrophy measures of spinal cord involvement and brain involvement and their relationships to disability in a small cohort of patients with multiple sclerosis (MS).

Background: Although it is known that cervical spinal cord atrophy correlates with disability in MS, it is unknown whether it is the most important determinant when compared to other regions of the central nervous system (CNS). Furthermore, it is not clear to what extent brain and cord lesions and atrophy are related.

View Article and Find Full Text PDF

MRI at 3 T has increased sensitivity in detecting overt multiple sclerosis (MS) brain lesions; a growing body of data suggests clinically relevant damage occurs in the normal-appearing white matter (NAWM). We tested a novel pulse sequence to determine whether 3 T MRI spin-spin relaxometry detected damage in NAWM of MS patients (n=13) vs. age-matched normal controls [(NL) (n=11)].

View Article and Find Full Text PDF

In Multiple Sclerosis (MS) patients, conventional magnetic resonance imaging (MRI) shows a pattern of white matter (WM) disruption but may also overlook some WM damage. Diffusion tensor MRI (DT-MRI) can provide important in-vivo information about fiber direction that is not provided by conventional MRI. The geometry of diffusion tensors can quantitatively characterize the local structure in tissues.

View Article and Find Full Text PDF

In any medical domain, it is common to have more than one test (classifier) to diagnose a disease. In image analysis, for example, there is often more than one reader or more than one algorithm applied to a certain data set. Combining of classifiers is often helpful, but determining the way in which classifiers should be combined is not trivial.

View Article and Find Full Text PDF

Multiple sclerosis (MS), a demyelinating disease, occurs principally in the white matter (WM) of the central nervous system. Conventional magnetic resonance imaging (MRI) is sensitive to some, but not all, brain changes associated with MS. Diffusion-weighted imaging (DWI) provides information about water diffusion in tissue and diffusion tensor MRI (DT-MRI) about fiber direction, allowing for the identification of WM abnormalities that are not apparent on conventional MRI images.

View Article and Find Full Text PDF

Objective: Medical classification accuracy studies often yield continuous data based on predictive models for treatment outcomes. A popular method for evaluating the performance of diagnostic tests is the receiver operating characteristic (ROC) curve analysis. The main objective was to develop a global statistical hypothesis test for assessing the goodness-of-fit (GOF) for parametric ROC curves via the bootstrap.

View Article and Find Full Text PDF

Spherical harmonics (SH) were used to approximate the volume and three-dimensional geometry of multiple sclerosis (MS) lesions in deceased patients. The institutional ethical committee does not require its approval for studies involving pathologic specimens. Pathologic findings were used as the reference standard.

View Article and Find Full Text PDF

Rationale And Objectives: Surgical planning now routinely uses both two-dimensional (2D) and three-dimensional (3D) models that integrate data from multiple imaging modalities, each highlighting one or more aspects of morphology or function. We performed a preliminary evaluation of the use of spherical harmonics (SH) in approximating the 3D shape and estimating the volume of brain tumors of varying characteristics.

Materials And Methods: Magnetic resonance (MR) images from five patients with brain tumors were selected randomly from our MR-guided neurosurgical practice.

View Article and Find Full Text PDF

During neurosurgical procedures the objective of the neurosurgeon is to achieve the resection of as much diseased tissue as possible while achieving the preservation of healthy brain tissue. The restricted capacity of the conventional operating room to enable the surgeon to visualize critical healthy brain structures and tumor margin has lead, over the past decade, to the development of sophisticated intraoperative imaging techniques to enhance visualization. However, both rigid motion due to patient placement and nonrigid deformations occurring as a consequence of the surgical intervention disrupt the correspondence between preoperative data used to plan surgery and the intraoperative configuration of the patient's brain.

View Article and Find Full Text PDF

In the longitudinal study of multiple sclerosis (MS) lesions, varying position of the patient inside the MRI scanner is one of the major sources of assessment errors. We propose to use analytical indices that are invariant to spatial orientation to describe the lesions, rather than focus on patient repositioning or image realignment. Studies were made on simulated lesions systematically rotated, from in vitro MS lesions scanned on different days, and from in vivo MS lesions from a patient that was scanned five times the same day with short intervals of time between scans.

View Article and Find Full Text PDF

Purpose: To suggest a quantitative method for assessing the temporal changes in the geometry of individual multiple sclerosis (MS) lesions in follow-up studies of MS patients.

Materials And Methods: Computer simulated and in vivo magnetic resonance (MR) imaged MS lesions were studied. Ten in vivo MS lesions were identified from sets of axial MR images acquired from a patient scanned consecutively for 24 times during a one-year period.

View Article and Find Full Text PDF