Publications by authors named "Daniel Gehrig"

Event cameras triggered a paradigm shift in the computer vision community delineated by their asynchronous nature, low latency, and high dynamic range. Calibration of event cameras is always essential to account for the sensor intrinsic parameters and for 3D perception. However, conventional image-based calibration techniques are not applicable due to the asynchronous, binary output of the sensor.

View Article and Find Full Text PDF

The computer vision algorithms used currently in advanced driver assistance systems rely on image-based RGB cameras, leading to a critical bandwidth-latency trade-off for delivering safe driving experiences. To address this, event cameras have emerged as alternative vision sensors. Event cameras measure the changes in intensity asynchronously, offering high temporal resolution and sparsity, markedly reducing bandwidth and latency requirements.

View Article and Find Full Text PDF

Natural microbial communities are phylogenetically and metabolically diverse. In addition to underexplored organismal groups, this diversity encompasses a rich discovery potential for ecologically and biotechnologically relevant enzymes and biochemical compounds. However, studying this diversity to identify genomic pathways for the synthesis of such compounds and assigning them to their respective hosts remains challenging.

View Article and Find Full Text PDF

Antibiotic resistance spread via plasmids is a serious threat to successfully fight infections and makes understanding plasmid transfer in nature crucial to prevent the rise of antibiotic resistance. Studies addressing the dynamics of plasmid conjugation have yet neglected one omnipresent factor: prophages (viruses integrated into bacterial genomes), whose activation can kill host and surrounding bacterial cells. To investigate the impact of prophages on conjugation, we combined experiments and mathematical modelling.

View Article and Find Full Text PDF