Low molecular weight polar organics are commonly observed in spacecraft environments. Increasing concentrations of one or more of these contaminants can negatively impact Environmental Control and Life Support (ECLS) systems and/or the health of crew members, posing potential risks to the success of manned space missions. Ambient plasma ionization mass spectrometry (MS) is finding effective use as part of the analytical methodologies being tested for next-generation space module environmental analysis.
View Article and Find Full Text PDFWe report on ab initio no-core shell model calculations of the mirror Λ hypernuclei _{Λ}^{4}H and _{Λ}^{4}He, using the Bonn-Jülich leading-order chiral effective field theory hyperon-nucleon potentials plus a charge symmetry breaking Λ-Σ^{0} mixing vertex. In addition to reproducing rather well the 0_{g.s.
View Article and Find Full Text PDFIn the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. However, with the construction of the International Space Station (ISS) and the subsequent extension in mission duration up to one year, an enhanced, real-time method for environmental monitoring is necessary. The station air is currently monitored for trace volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (GC-DMS) via the Air Quality Monitor (AQM), while water is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively.
View Article and Find Full Text PDFWe present the first ab initio calculations for p-shell single-Λ hypernuclei. For the solution of the many-baryon problem, we develop two variants of the no-core shell model with explicit Λ and Σ(+),Σ(0),Σ(-) hyperons including Λ-Σ conversion, optionally supplemented by a similarity renormalization group transformation to accelerate model-space convergence. In addition to state-of-the-art chiral two- and three-nucleon interactions, we use leading-order chiral hyperon-nucleon interactions and a recent meson-exchange hyperon-nucleon interaction.
View Article and Find Full Text PDFThe development of a direct analysis in real time-mass spectrometry (DART-MS) method and first prototype vaporizer for the detection of low molecular weight (∼30-100 Da) contaminants representative of those detected in water samples from the International Space Station is reported. A temperature-programmable, electro-thermal vaporizer (ETV) was designed, constructed, and evaluated as a sampling interface for DART-MS. The ETV facilitates analysis of water samples with minimum user intervention while maximizing analytical sensitivity and sample throughput.
View Article and Find Full Text PDFThe space flight environment is known to induce bone loss and, subsequently, calcium loss. The longer the mission, generally the more bone and calcium are lost. This review provides a history of bone and calcium studies related to space flight and highlights issues related to calcium excretion that the space program must consider so that urine can be recycled.
View Article and Find Full Text PDFThis paper reports the design and ground-based testing of a multiplexed colorimetric solid-phase extraction (MC-SPE) platform for the rapid determination of multiple water quality parameters in a simple set of operational steps. Colorimetric solid-phase extraction (C-SPE) is an analytical platform that combines impregnated colorimetric reagents on a solid-phase extraction membrane and diffuse reflectance spectroscopy to quantify trace analytes in water. In extending C-SPE to MC-SPE, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple syringes have been designed, enabling the simultaneous determination of three different measures of water quality.
View Article and Find Full Text PDF