Publications by authors named "Daniel Garcia-Calderon"

Despite increasing knowledge about small extracellular vesicle (sEV) composition and functions in cell-cell communication, the mechanism behind their biogenesis remains unclear. Here, we reveal for the first time that sEV biogenesis and release into the microenvironment are tightly connected with another important organelle, Lipid Droplets (LDs). The correlation was observed in several human cancer cell lines as well as patient-derived colorectal cancer stem cells (CR-CSCs).

View Article and Find Full Text PDF
Article Synopsis
  • Gliomas, a severe type of brain tumor, frequently recur and can metastasize, with limited existing treatments for reducing metastasis, highlighting a need for new anti-metastatic agents.
  • Copper complexes have shown potential as effective anti-metastatic agents, but their use may disrupt healthy tissue balance; thus, incorporating these complexes into nano-architectures can enhance targeted delivery and minimize side effects.
  • Newly developed copper complex-loaded nano-architectures (CuLNAs) significantly reduce glioma cell migration without negatively affecting cell growth, and they modulate key genes involved in the epithelial-to-mesenchymal transition, presenting a promising strategy for anticancer therapies.
View Article and Find Full Text PDF

Purpose: Our objective was to develop a methodology for assessing the linear energy transfer (LET) and relative biological effectiveness (RBE) in clinical proton and helium ion beams using fluorescent nuclear track detectors (FNTDs).

Methods And Materials: FNTDs were exposed behind solid water to proton and helium (He) ion spread-out Bragg peaks. Detectors were imaged with a confocal microscope, and the LET spectra were derived from the fluorescence intensity.

View Article and Find Full Text PDF

Background: Minibeam radiation therapy (MBRT) is an innovative dose delivery method with the potential to spare normal tissue while achieving similar tumor control as conventional radiotherapy. However, it is difficult to use a single dose parameter, such as mean dose, to compare different patterns of MBRT due to the spatially fractionated radiation. Also, the mechanism leading to the biological effects is still unknown.

View Article and Find Full Text PDF

Background: Solid tumors are often riddled with hypoxic areas, which develops as a result of high proliferation. Cancer cells willingly adapt and thrive in hypoxia by activating complex changes which contributes to survival and enhanced resistance to treatments, such as photon radiation. Photon radiation primarily relies on oxygen for the production of reactive oxygen species to induce DNA damage.

View Article and Find Full Text PDF

Clonogenic assays are routinely used to evaluate the response of cancer cells to external radiation fields, assess their radioresistance and radiosensitivity, estimate the performance of radiotherapy. However, classic clonogenic tests focus on the number of colonies forming on a substrate upon exposure to ionizing radiation, and disregard other important characteristics of cells such their ability to generate structures with a certain shape. The radioresistance and radiosensitivity of cancer cells may depend less on the number of cells in a colony and more on the way cells interact to form complex networks.

View Article and Find Full Text PDF

The influence of different average and bunch dose rates in electron beams on the FLASH effect was investigated. The present study measures O content in water at different beam pulse patterns and finds strong correlation with biological data, strengthening the hypothesis of radical-related mechanisms as a reason for the FLASH effect.

View Article and Find Full Text PDF

Radiation therapy (RT) is now considered to be a main component of cancer therapy, alongside surgery, chemotherapy and monoclonal antibody-based immunotherapy. In RT, cancer tissues are exposed to ionizing radiation causing the death of malignant cells and favoring cancer regression. However, the efficiency of RT may be hampered by cell-radioresistance (RR)-that is a feature of tumor cells of withstanding RT.

View Article and Find Full Text PDF

Breast cancer is the most frequent cancer in women worldwide and late diagnosis often adversely affects the prognosis of the disease. Radiotherapy is commonly used to treat breast cancer, reducing the risk of recurrence after surgery. However, the eradication of radioresistant cancer cells, including cancer stem cells, remains the main challenge of radiotherapy.

View Article and Find Full Text PDF

Although much progress has been made in cancer treatment, the molecular mechanisms underlying cancer radioresistance (RR) as well as the biological signatures of radioresistant cancer cells still need to be clarified. In this regard, we discovered that breast, bladder, lung, neuroglioma, and prostate 6 Gy X-ray resistant cancer cells were characterized by an increase of lipid droplet (LD) number and that the cells containing highest LDs showed the highest clonogenic potential after irradiation. Moreover, we observed that LD content was tightly connected with the iron metabolism and in particular with the presence of the ferritin heavy chain (FTH1).

View Article and Find Full Text PDF