Objective: In this study, 25 synthetic cyclic lipopeptides (CLPs) were investigated for their anticancer potential against mouse melanoma (B16F10) cells, human prostate cancer (PC-3), human colorectal adenocarcinoma (HT-29) and mouse embryonic fibroblast (NIH3T3) cells.
Methods: The cytotoxic activity of investigated compounds was evaluated using MTT and CV assays. In order to examine the mechanism of action of the most potent compound cell cycle analysis, apoptosis assay, caspase activity, CFSE and DHR staining, DAF-FM, autophagy and immunocytochemistry caspase-3 assays were performed.
Gene expression manipulation is pivotal in therapeutic approaches for various diseases. Non-viral delivery systems present a safer alternative to viral vectors, with reduced immunogenicity and toxicity. However, their effectiveness in promoting endosomal escape, a crucial step in gene transfer, remains limited.
View Article and Find Full Text PDFPeptide-drug conjugates (PDCs) have recently gained significant attention for the targeted delivery of anticancer therapeutics, mainly due to their cost-effective and chemically defined production and lower antigenicity compared to ADCs, among other benefits. In this study, we designed and synthesized novel PDCs by conjugating new thiol-functionalized tubulysin analogs (tubugis) to bombesin, a peptide ligand with a relevant role in cancer research. Two tubulysin analogs bearing ready-for-conjugation thiol groups were prepared by an on-resin multicomponent peptide synthesis strategy and subsequently tested for their stand-alone anti-proliferative activity against human cancer cells, which resulted in IC values in the nanomolar range.
View Article and Find Full Text PDFTubulysins are among the most recent antimitotic compounds to enter into antibody/peptide-drug conjugate (ADC/PDC) development. Thus far, the design of the most promising tubulysin payloads relied on simplifying their structures, e. g.
View Article and Find Full Text PDFThe chemical modification of biopolymers like peptides and proteins is a key technology to access vaccines and pharmaceuticals. Similarly, the tunable derivatization of individual amino acids is important as they are key building blocks of biomolecules, bioactive natural products, synthetic polymers, and innovative materials. The high diversity of functional groups present in amino acid-based molecules represents a significant challenge for their selective derivatization Recently, visible light-mediated transformations have emerged as a powerful strategy for achieving chemoselective biomolecule modification.
View Article and Find Full Text PDF(1) Background: In children, SARS-CoV-2 infection is mostly accompanied by mild COVID-19 symptoms. However, multisystem inflammatory syndrome (MIS-C) and long-term sequelae are often severe complications. Therefore, the protection of the pediatric population against SARS-CoV-2 with effective vaccines is particularly important.
View Article and Find Full Text PDFThe development of potent adjuvants is an important step for improving the performance of subunit vaccines. CD1d agonists, such as the prototypical α-galactosyl ceramide (α-GalCer), are of special interest due to their ability to activate iNKT cells and trigger rapid dendritic cell maturation and B-cell activation. Herein, we introduce a novel derivatization hotspot at the α-GalCer skeleton, namely the N-substituent at the amide bond.
View Article and Find Full Text PDFMacrocyclization of peptides is typically used to fix specific bioactive conformations and improve their pharmacological properties. Recently, macrobicyclic peptides have received special attention owing to their capacity to mimic protein structures or be key components of peptide-drug conjugates. Here, we describe the development of novel synthetic strategies for two distinctive types of peptide macrobicycles.
View Article and Find Full Text PDFBackground: Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections.
View Article and Find Full Text PDFBackground: SOBERANA 02 has been evaluated in phase I and IIa studies comparing homologous versus heterologous schedule (this one, including SOBERANA Plus). Here, we report results of immunogenicity, safety, and reactogenicity of SOBERANA 02 in a two- or three-dose heterologous scheme in adults.
Method: Phase IIb was a parallel, multicenter, adaptive, double-blind, randomized, and placebo-controlled trial.
Background: SOBERANA 02 is a COVID-19 vaccine based on SARS-CoV-2 recombinant RBD conjugated to tetanus toxoid (TT). SOBERANA Plus antigen is dimeric-RBD. Here we report safety and immunogenicity from phase I and IIa clinical trials using two-doses of SOBERANA 02 and three-doses (homologous) or heterologous (with SOBERANA Plus) protocols.
View Article and Find Full Text PDFThis study evaluates safety of FINLAY-FR-02, a vaccine candidate against SARS-CoV-2 based on the recombinant receptor binding domain conjugated to tetanus toxoid, in a preclinical, repeat-dose toxicity and local tolerance study. Sprague Dawley rats were randomly allocated to three experimental groups: control (receiving physiological saline solution); placebo (receiving all vaccine components except antigens) and vaccine group (receiving three doses of the vaccine candidate, 37.5 µg of RBD) administered intramuscularly in hind limbs at 24 h intervals during three days.
View Article and Find Full Text PDFSARS-CoV-2 infection is mediated by the interaction of the spike glycoprotein trimer its receptor-binding domain (RBD) with the host's cellular receptor. Vaccines seek to block this interaction by eliciting neutralizing antibodies, most of which are directed toward the RBD. Many protein subunit vaccines require powerful adjuvants to generate a potent antibody response.
View Article and Find Full Text PDFNovel unimolecular bivalent glycoconjugates were assembled combining several functionalized capsular polysaccharides of Streptococcus pneumoniae and Neisseria meningitidis to a carrier protein by using an effective strategy based on the Ugi 4-component reaction. The development of multivalent glycoconjugates opens new opportunities in the field of vaccine design, but their high structural complexity involves new analytical challenges. Nuclear Magnetic Resonance has found wide applications in the characterization and impurity profiling of carbohydrate-based vaccines.
View Article and Find Full Text PDFBackground: Human infectious diseases caused by bacteria are a worldwide health problem due to the increased resistance of these microorganisms to conventional antibiotics. For this reason, the identification of novel molecular targets and the discovery of new antibacterial compounds are urgently required. Metalo-aminopeptidases are promising targets in bacterial infections.
View Article and Find Full Text PDFAn efficient strategy combining the stereocontrol of organocatalysis with the diversity-generating character of multicomponent reactions is described to produce structurally unique, tetrasubstituted cyclopentenyl frameworks. An asymmetric Michael addition-hemiacetalization between α-cyanoketones and α,β-unsaturated aliphatic aldehydes was performed for constructing cyclic hemiacetals, which were next employed as chiral bifunctional substrates in a new diastereoselective intramolecular isocyanide-based multicomponent reaction. This approach furnished a diversity of structurally complex compounds - including peptidomimetics and natural product hybrids in high stereoselectivity (up to >99% ee and up to >99 : 1 dr) and in moderate to high yields.
View Article and Find Full Text PDFSubunit vaccines based on the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 provide one of the most promising strategies to fight the COVID-19 pandemic. The detailed characterization of the protein primary structure by mass spectrometry (MS) is mandatory, as described in ICHQ6B guidelines. In this work, several recombinant RBD proteins produced in five expression systems were characterized using a non-conventional protocol known as in-solution buffer-free digestion (BFD).
View Article and Find Full Text PDFChagas disease, caused by the kinetoplastid parasite , is a human tropical illness mainly present in Latin America. The therapies available against this disease are far from ideal. Proteases from pathogenic protozoan have been considered as good drug target candidates.
View Article and Find Full Text PDFMulticomponent reactions (MCRs) are recently expanding the plethora of solid-phase protocols for the synthesis and derivatization of peptides. Herein, we describe a solid-phase-compatible strategy based on MCRs as a powerful strategy for peptide cyclization and ligation . We illustrate, using Gramicidin S as a model peptide, how the execution of on-resin Ugi reactions enables the simultaneous backbone N-functionalization and cyclization, which are important types of derivatizations in peptide-based drug development or for incorporation of conjugation handles, or labels.
View Article and Find Full Text PDFControlling the global COVID-19 pandemic depends, among other measures, on developing preventive vaccines at an unprecedented pace. Vaccines approved for use and those in development intend to elicit neutralizing antibodies to block viral sites binding to the host's cellular receptors. Virus infection is mediated by the spike glycoprotein trimer on the virion surface via its receptor binding domain (RBD).
View Article and Find Full Text PDFThe development of recombinant COVID-19 vaccines has resulted from scientific progress made at an unprecedented speed during 2020. The recombinant spike glycoprotein monomer, its trimer, and its recombinant receptor-binding domain (RBD) induce a potent anti-RBD neutralizing antibody response in animals. In COVID-19 convalescent sera, there is a good correlation between the antibody response and potent neutralization.
View Article and Find Full Text PDFCm-p5 is a snail-derived antimicrobial peptide, which demonstrated antifungal activity against the pathogenic strains of . Previously we synthetized a cyclic monomer as well as a parallel and an antiparallel dimer of Cm-p5 with improved antifungal activity. Considering the alarming increase of microbial resistance to conventional antibiotics, here we evaluated the antimicrobial activity of these derivatives against multiresistant and problematic bacteria and against important viral agents.
View Article and Find Full Text PDFThe stabilization of helical structures by peptide stapling approaches is now a mature technology capable to provide a variety of biomedical applications. Recently, it was shown that multicomponent macrocyclization is not only an effective way to introduce conformational constraints but it also allows to incorporate additional functionalities to the staple moiety in a one-pot process. This work investigates the scope of the double Ugi multicomponent stapling approach in its capacity to produce helical peptides from unstructured sequences.
View Article and Find Full Text PDFSolid-phase synthesis represents the methodological showcase for technological advances such as split-and-pool combinatorial chemistry and the automated synthesis of peptides, nucleic acids and polysaccharides. These strategies involve iterative coupling cycles that do not generate functional diversity besides that incorporated by the amino acids, nucleosides and monosaccharide building blocks. In sharp contrast, multicomponent reactions (MCRs) are traditionally used to generate both skeletal and appendage diversity in short, batchwise procedures.
View Article and Find Full Text PDF