This work presents the shape optimization and subsequent experimental validation of an acoustic lens with application to a compact loudspeaker, such as found in commercial speakerphones. The shape optimization framework is based on a combined lumped parameter and boundary element method model using free form deformation geometry parameterization. To test the optimized design, the loudspeaker lens is three-dimensionally printed and experimentally characterized under anechoic conditions on a finite baffle with respect to its off-axis frequency response.
View Article and Find Full Text PDFThis paper demonstrates how significant improvement in frequency response and directivity of a loudspeaker may be obtained by optimizing the local properties of the materials for the diaphragm and surround. Performance is investigated as the considered frequency range and off-axis requirements are progressively expanded. The results are generated by optimizing the values and layout of stiffness, mass, and damping of both the speaker diaphragm and surround.
View Article and Find Full Text PDF