Publications by authors named "Daniel G Mulreany"

Purpose: This study was performed to evaluate the potential of a collagen-based membrane, collagen vitrigel (CV), for reconstructing corneal epithelium in the stromal wound and limbal stem cell deficiency (LSCD) models.

Methods: Three groups of rabbits were used in the stromal wound model: CV affixed using fibrin glue (CV + FG group, n = 9), fibrin glue only (FG group, n = 3) and an untreated control group (n = 3). In the LSCD model, one group received CV containing human limbal epithelial cells (CV + hLEC group, n = 2) and the other was an untreated control (n = 1).

View Article and Find Full Text PDF

This study was performed to evaluate the potential of a chondroitin sulfate-polyethylene glycol (CS-PEG) adhesive and collagen-based membrane (collagen vitrigel, CV) combination as a method to treat penetrating ocular injuries on the battlefield and to improve this method with two technologies: an antibiotic releasing CS-PEG adhesive and a corneal shaped CV. Burst testing using porcine cadaveric eyes, high-performance liquid chromatography, the Kirby-Bauer bacterial inhibition test, and CV implantations on the live and cadaveric rabbit eyes were performed. The ocular burst test showed CS-PEG adhesive could successfully repair 5-mm to 6-mm length wounds in the corneal and corneoscleral regions but would require CS-PEG + CV to treat larger wounds similar to those seen on the battlefield.

View Article and Find Full Text PDF

The frequency of ocular injuries on the battlefield has been steadily increasing during recent conflicts. Combat-related eye injuries are difficult to treat and solutions requiring donor tissue are not ideal and are often not readily available. Collagen vitrigels have previously been developed for corneal reconstruction, but increased transparency and mechanical strength are desired for improved vision and ease of handling.

View Article and Find Full Text PDF

Objective: The Sensormedics 3100A and 3100B are widely used to provide high-frequency oscillatory ventilation in clinical practice. Infants and children <35 kg are typically oscillated with the 3100A and >35 kg with the 3100B. This study compares the effect of ventilator and patient parameters on delivered tidal volume during high-frequency oscillatory ventilation of a test lung with these devices.

View Article and Find Full Text PDF

Background: Studies using transthoracic thermodilution have demonstrated increased extravascular lung water (EVLW) measurements attributed to progression of edema and flooding during sepsis and acute lung injury. The authors hypothesized that redistribution of pulmonary blood flow can cause increased apparent EVLW secondary to increased perfusion of thermally silent tissue, not increased lung edema.

Methods: Anesthetized, mechanically ventilated canines were instrumented with PiCCO (Pulsion Medical, Munich, Germany) catheters and underwent lung injury by repetitive saline lavage.

View Article and Find Full Text PDF

Rationale And Objectives: For mechanical ventilation of patients with pulmonary injuries, it has been proposed that high-frequency oscillatory ventilation (HFOV) offers advantages over conventional ventilation (CV); however, these advantages have been difficult to quantify. We used volumetric, dynamic imaging of Xenon (Xe) washout of the canine lung during both HFOV and CV to compare regional ventilation in the two modalities.

Materials And Methods: Three anesthetized, mechanically ventilated animals were studied, each at three different ventilator settings.

View Article and Find Full Text PDF