Publications by authors named "Daniel G M Molin"

Orthopedic implants such as knee and hip implants are one of the most important types of medical devices. Currently, the surface of the most advanced implants consists of titanium or titanium-alloys with high porosity at the bone-contacting surface leading to superior mechanical properties, excellent biocompatibility, and the capability of inducing osseointegration. However, the increased surface area of porous titanium provides a nidus for bacteria colonization leading to implant-related infections, one of the main reasons for implant failure.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) is accompanied by a systemic trauma response that impacts the whole body, including blood. This study addresses whether macrophages, key players in trauma repair, sense and respond to these changes. For this, healthy human monocyte-derived macrophages are exposed to 20% human AMI (n = 50) or control (n = 20) serum and analyzed by transcriptional and multiparameter functional screening followed by network-guided data interpretation and drug repurposing.

View Article and Find Full Text PDF

The biocompatibility, tunable degradability and broad functionalities of polyphosphoesters and their potential for biomedical applications have stimulated a renewed interest from Chemistry, Medicinal Chemistry and Polymer Sciences. Commercial applications of polyphosphoesters as biomaterials are still hampered because of the time and resource-intensive sourcing of their corresponding monomers, in addition to the corrosive and sensitive nature of their intermediates and by-products. Here, we present a groundbreaking challenge for sourcing the corresponding cyclic phosphate monomers by a different approach.

View Article and Find Full Text PDF

Poly(ethylene glycol)--polyphosphoester (PEG--PPE) block copolymer nanoparticles are promising carriers for poorly water soluble drugs. To enhance the drug loading capacity and efficiency of such micelles, a strategy was investigated for increasing the lipophilicity of the PPE block of these PEG--PPE amphiphilic copolymers. A PEG--PPE copolymer bearing pendant vinyl groups along the PPE block was synthesized and then modified by thiol-ene click reaction with thiols bearing either a long linear alkyl chain (dodecyl) or a tocopherol moiety.

View Article and Find Full Text PDF

Substantial research has been devoted to discovering the translational potential of extracellular vesicles (EV) as a reliable liquid biopsy in the diagnosis and monitoring of several life-affecting diseases, including chronic inflammatory diseases (CID). So far, the role of EV in the development of CID remains largely unknown due to the lack of specific tools to separate the disease-associated EV subtypes. Therefore, this study aims to fractionate inflammation-associated EV (sub)populations using a two-step separation strategy based on their size combined with a specific inflammatory marker (ICAM-1) and to unravel their proteome signature and functional integrity at the onset of vascular inflammation.

View Article and Find Full Text PDF

Autologous fat transfer (AFT) is limited by post-operative volume loss due to ischemia-induced cell death in the fat graft. Previous studies have demonstrated that electrical stimulation (ES) promotes angiogenesis in a variety of tissues and cell types. In this study we investigated the effects of ES on the angiogenic potential of adipose-derived stem cells (ASC), important progenitor cells in fat grafts with proven angiogenic potential.

View Article and Find Full Text PDF

Given the major structural role phosphodiesters play in the organism it is surprising they have not been more widely adopted as a building block in sophisticated biomimetic hydrogels and other biomaterials. The potential benefits are substantial: phosphoester-based materials show excellent compatibility with blood, cells, and a remarkable resistance to protein adsorption that may trigger a foreign-body response. In this work, a novel class of phosphodiester-based ionic hydrogels is presented which are crosslinked via a phosphodiester moiety.

View Article and Find Full Text PDF

Functional synthetic polymers are frequently explored for their use in the biomedical field. To fulfill the stringent demands of biodegradability and compatibility, the materials need to be versatile and tunable. Post-modification is often considered challenging for well-known degradable materials like poly(lactic acid) because of their chemical inertness.

View Article and Find Full Text PDF

Extracellular vesicles (EV) mediated intercellular communication between monocytes and endothelial cells (EC) might play a major role in vascular inflammation and atherosclerotic plaque formation during cardiovascular diseases (CVD). While critical involvement of small (exosomes) and large EV (microvesicles) in CVD has recently been appreciated, the pro- and/or anti-inflammatory impact of a bulk EV (exosomes + microvesicles) on vascular cell function as well as their inflammatory capacity are poorly defined. This study aims to unravel the immunomodulatory content of EV bulk derived from control (uEV) and TNF-α induced inflamed endothelial cells (tEV) and to define their capacity to affect the inflammatory status of recipients monocytes (THP-1) and endothelial cells (HUVEC) .

View Article and Find Full Text PDF

Isolating and maintaining the appropriate stem cell for large scale cell culture is essential in tissue engineering or food production. For bovine satellite cells an optimized isolation and purification protocol is lacking and there is also no detailed understanding on the factors that maintain stemness of these cells. Here, we set up a fluorescence-activated cell sorting strategy to enrich bovine satellite cells.

View Article and Find Full Text PDF

A major conceptual breakthrough in cell signaling has been the finding of EV as new biomarker shuttles in body fluids. Now, one of the major challenges in using these nanometer-sized biological entities as diagnostic marker is the development of translational methodologies to profile them. SPR offers a promising label-free and real time platform with a high potential for biomarker detection.

View Article and Find Full Text PDF

Poly(D,L-lactic acid) biodegradable microspheres, loaded with the drugs cisplatin and/or sorafenib tosylate, were prepared, characterized and studied. Degradation of the microspheres, and release of cisplatin and/or sorafenib tosylate from them, were investigated in detail. Incubation of the drug-carrying microspheres in phosphate buffered saline (pH=7.

View Article and Find Full Text PDF

Aims: The mechanisms of monocyte recruitment to arteriogenic collaterals are largely unknown. We investigated the role of chemokine (C-X-C-motif) ligand 1 (CXCL1) and its cognate receptor, chemokine (C-X-C-motif) receptor 2 (CXCR2) in arteriogenesis.

Methods And Results: After femoral artery ligation in Sprague-Dawley rats, either native collaterals were harvested or placebo, CXCL1 or CXCR2 blocker was administered via an osmopump.

View Article and Find Full Text PDF

Poly (2-dimethylamino ethylmethacrylate) (PDMAEMA) is an attractive non-degradable polymer studied as nonviral vector for gene delivery but it can be also adopted for delivery of other biopharmaceutical drugs. As a parenteral carrier, the PDMAEMA free form (FF) might interact with tissues and cells. Few data are available on its selective internalization and efflux from cells, while the majority of studies published have followed the distribution of DNA complexed with PDMAEMA.

View Article and Find Full Text PDF

Biodegradable poly(D,L-lactic acid) drug-eluting microspheres containing anti-tumor drugs, cisplatin, and sorafenib tosylate have been prepared by the emulsion solvent evaporation method with diameter between 200 and 400 μm. Scanning electron microscopy showed that cisplatin microspheres had smooth surfaces, while sorafenib tosylate microspheres and cisplatin + sorafenib tosylate microspheres were porous at the surface and the pits of the latter were larger than those of the former. Notably, cisplatin + sorafenib tosylate microspheres had a fast drug release rate compared with microspheres containing one drug alone.

View Article and Find Full Text PDF

Rationale And Objective: Arginase-1 is an important component of the intricate mechanism regulating arginine availability during immune responses and nitric oxide synthase (NOS) activity. In this study Arg1(fl/fl)/Tie2-Cre(tg/-) mice were developed to investigate the effect of arginase-1 related arginine depletion on NOS2- and NOS3-dependent NO production and jejunal microcirculation under resting and endotoxemic conditions, in mice lacking arginase-1 in endothelial and hematopoietic cells.

Methods And Results: Arginase-1-deficient mice as compared with control mice exhibited higher plasma arginine concentration concomitant with enhanced NO production in endothelial cells and jejunal tissue during endotoxemia.

View Article and Find Full Text PDF

To study the role and (sub) cellular nitric oxide (NO) constitution in various disease processes, its direct and specific detection in living cells and tissues is a major requirement. Several methods are available to measure the oxidation products of NO, but the detection of NO itself has proved challenging. We visualized NO production using a NO-sensitive copper-based fluorescent probe (Cu 2FL2E) and two-photon laser scanning microscopy (TPLSM).

View Article and Find Full Text PDF

Over the past decades, a large number of animal-derived materials have been introduced for several biomedical applications. Surprisingly, the use of plant-based materials has lagged behind. To study the feasibility of plant-derived biomedical materials, we chose flax (Linum usitatissimum).

View Article and Find Full Text PDF

Bioresorbable coronary vascular scaffolds are about to revolutionize the landscape of interventional cardiology. These scaffolds, consisting of a poly(L-lactic acid) interior and a poly(D,L-lactic acid) surface coating, offer a genuine alternative for metallic coronary stents. Perhaps the only remaining drawback is that monitoring during implantation is limited to two X-ray contrast points.

View Article and Find Full Text PDF

The process of thrombin generation involves numerous plasma proteases and cofactors. Interaction with the vessel wall, in particular endothelial cells (ECs), influences this process but data on this interaction is limited. We evaluated thrombin generation on EA.

View Article and Find Full Text PDF

Congenital cardiac abnormalities are, due to their relatively high frequency and severe impact on quality of life, an important focus in cardiovascular research. Recently, various human studies have revealed a high coincidence of VEGF and NOTCH polymorphisms with cardiovascular outflow tract anomalies, such as bicuspid aortic valves and Tetralogy of Fallot, next to predisposition for cardiovascular pathologies, including atherosclerosis and aortic valve calcification. This genetic association between VEGF/NOTCH mutations and congenital cardiovascular defects in humans has been supported by substantial proof from animal models, revealing interaction of both pathways in cellular processes that are crucial for cardiac development.

View Article and Find Full Text PDF

The development of the vascular system begins with the formation of hemangioblastic cells, hemangioblasts, which organize in blood islands in the yolk sac. The hemangioblasts differentiate into hematopoietic and angioblastic cells. Subsequently, the hematopoietic line will generate blood cells, whereas the angioblastic cells will give rise to vascular endothelial cells (ECs).

View Article and Find Full Text PDF

Short-term thrombotic occlusion and compliance mismatch hamper clinical use of synthetic small-diameter tissue engineered vascular grafts. It is felt that preconditioning of the graft with intimal (endothelial) and medial (vascular smooth muscle) cells contributes to patency of the graft. Autologous, non-vessel-derived cells are preferred because of systemic vascular pathology and immunologic concerns.

View Article and Find Full Text PDF

Objective: Notch has been implicated in neointima formation as reflected by increased Notch/Jagged expression on vascular injury and the promigratory effect of Notch signaling on smooth muscle cells. Soluble Jagged-1 (sJag1) has been shown to inhibit Notch signaling in vitro; however, its capacity to suppress neointima formation remains unknown.

Methods And Results: Balloon injury of rat carotid arteries induced Notch1, Notch3, and Jagged-1 expression at days 3 and 14 postinjury.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionn49sc1bp3isvru4c66bug005sjoo3uue): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once