Tissue-regulated alternative exons are dictated by the interplay between cis-elements and trans-regulatory factors such as RNA binding proteins. Despite extensive research on splicing regulation, the full repertoire of these cis and trans features and their evolutionary dynamics across species are yet to be fully characterized. Members of the CUG-binding protein and ETR-like family (CELF) of RNA binding proteins are known to play a key role in the regulation of tissue-biased splicing patterns, and when mutated, these proteins have been implicated in a number of neurological and muscular disorders.
View Article and Find Full Text PDFThe apicomplexan intracellular parasite Toxoplasma gondii is a major food borne pathogen that is highly prevalent in the global population. The majority of the T. gondii proteome remains uncharacterized and the organization of proteins into complexes is unclear.
View Article and Find Full Text PDFGeographically distinct populations can adapt to the temperature conditions of their local environment, leading to temperature-dependent fitness differences between populations. Consistent with local adaptation, phylogeographically distinct Caenorhabditis briggsae nematodes show distinct fitness responses to temperature. The genetic mechanisms underlying local adaptation, however, remain unresolved.
View Article and Find Full Text PDF