Chemphyschem
October 2024
In this study, we explore the stereoselectivity of Hurd-Claisen Rearrangements, focusing on the influence of two electron-withdrawing groups and eight diverse substituents. Utilizing the Curtin-Hammett principle, we performed energy calculations for reactions, products, and transition states using the M062X/def2TZVPP compound model. Our analysis reveals that kinetic factors predominantly dictate the reaction equilibrium.
View Article and Find Full Text PDFAccurate ab initio calculations provide the reliable information needed to study the potential energy surfaces that control the non-covalent interactions (NCIs) responsible for the formation of weak van der Waals complexes. In this work, relying on the state of the art method for NCI computations, namely symmetry adapted perturbation theory (SAPT), we calculated the potential energy curves for the interaction of noble gases (Ng = He, Ne, Ar and Kr) with methanol in three different interaction sites to account for orientational anisotropy of the interaction potential. Different levels of the SAPT and basis set were employed to disclose the nature of the stabilizing forces acting upon formation of the Ng-CHOH adducts.
View Article and Find Full Text PDFOrg Biomol Chem
May 2019
Herein we report the first systematic investigation of the tandem mercury(ii) catalysed transvinylation/Hurd-Claisen rearrangement of MBH adducts derived from alkyl acrylates. This is the first report of E-selectivity for MBH adducts with alkyl side chains and is complementary to the previously reported Johnson-Claisen and Eschenmoser-Claisen rearrangements. The rearrangement products were obtained in good yields and could be readily converted to 2-alkenyl δ-valerolactones.
View Article and Find Full Text PDF