Publications by authors named "Daniel Flint"

Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAP;Gfap) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAP;Gfap versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD.

View Article and Find Full Text PDF

Astrocytes have a prominent role in metabolic homeostasis of the brain and can signal to adjacent neurons by releasing glutamate via a process of regulated exocytosis. Astrocytes synthesize glutamate de novo owing to the pyruvate entry to the citric/tricarboxylic acid cycle via pyruvate carboxylase, an astrocyte specific enzyme. Pyruvate can be sourced from two metabolic fuels, glucose and lactate.

View Article and Find Full Text PDF

Background: Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the transcriptional regulator MeCP2. Much of our understanding of MeCP2 function is derived from transcriptomic studies with the general assumption that alterations in the transcriptome correlate with proteomic changes. Advances in mass spectrometry-based proteomics have facilitated recent interest in the examination of global protein expression to better understand the biology between transcriptional and translational regulation.

View Article and Find Full Text PDF

Alexander disease (AxD) is a neurodegenerative disorder characterized by astrocytic protein aggregates called Rosenthal fibers (RFs). We used mouse models of AxD to determine the protein composition of RFs to obtain information about disease mechanisms including the hypothesis that sequestration of proteins in RFs contributes to disease. A method was developed for RF enrichment, and analysis of the resulting fraction using isobaric tags for relative and absolute quantitation mass spectrometry identified 77 proteins not previously associated with RFs.

View Article and Find Full Text PDF

Current organophosphorus nerve agent medical countermeasures do not directly address the nicotinic effects of poisoning. A series of antinicotinic bispyridinium compounds has been synthesized in our laboratory and screened in vitro. Their actions can include open-channel block at the nicotinic receptor which may contribute to their efficacy.

View Article and Find Full Text PDF

Alexander disease (AxD) is a usually fatal astrogliopathy primarily caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP), an intermediate filament protein expressed in astrocytes. We describe three patients with unique characteristics, and whose mutations have implications for AxD diagnosis and studies of intermediate filaments. Patient 1 is the first reported case with a noncoding mutation.

View Article and Find Full Text PDF

Objective: To describe genetic analyses of the 2 most thoroughly studied, historically seminal multigenerational families with Alexander disease described prior to the identification of GFAP as the related gene, as well as 1 newly discovered family.

Design: Clinical histories were obtained and DNA was analyzed from blood, cheek epithelial cells, or fixed paraffin-embedded surgical samples.

Subjects: Affected and unaffected adult members of 3 families and affected children were included.

View Article and Find Full Text PDF

Intramolecular cross-linking of peptides by the light-sensitive compound diiodoacetamideazobenzene has been shown to permit reversible photocontrol of the helix-coil transition. Cross-linking between Cys residues spaced at i and i + 7 positions with the trans form of the linker was found to produce a decreased helix content compared to that of the non-cross-linked peptide. Photoisomerization to the cis form of the linker led to substantially higher helix content than in the non-cross-linked peptide.

View Article and Find Full Text PDF

We have recently developed a technique that has great potential in producing proteins with photo-control of conformation and consequently activity (J. R. Kumita, O.

View Article and Find Full Text PDF

Photo-control of protein conformation could prove useful for probing function in diverse biological systems. Recently, we reported photo-switching of helix content in a short peptide containing an azobenzene cross-linker between cysteine residues at positions i and i + 7 in the sequence. In the original sequence, underlying residues at positions i + 3 and i + 4 were made bulky as preliminary modelling suggested that this would enhance photo-control of helix content.

View Article and Find Full Text PDF

Reversible photocontrol of peptide and protein conformation could prove to be a powerful tool for probing function in diverse biological systems. Here, we report reversible photoswitching of the helix content in short peptides containing an azobenzene cross-linker between cysteine residues at positions i, i + 4, or i, i + 11 in the sequence. Trans-to-cis photoisomerization significantly increases the helix content in the i, i + 4 case and significantly decreases the helix content in the i, i + 11 case.

View Article and Find Full Text PDF