Publications by authors named "Daniel Filchtinski"

A quantitative, high throughput, fully automated diagnostic method for the detection of neutralizing anti-SARS-CoV-2 antibodies was developed on the Phadia system based on the interaction of SARS-CoV-2 S1 protein and the human ACE-2 receptor. This method was compared to the current state of the art plaque reduction neutralization test (PRNT) and a high correlation between the two methods was observed. Using a large cohort of blood samples from convalescent patients and controls the method displays very high sensitivity and specificity (99,8% and 99.

View Article and Find Full Text PDF

Background: Plasma-derived intravenous immunoglobulin (IVIg) products contain a dynamic spectrum of immunoglobulin (Ig) G reactivities reflective of the donor population from which they are derived. We sought to model the concentration of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG which could be expected in future plasma pool and final-product batches of CSL Behring's immunoglobulin product Privigen.

Study Design And Methods: Data was extracted from accessible databases, including the incidence of coronavirus disease 2019 and SARS-CoV-2 vaccination status, antibody titre in convalescent and vaccinated groups and antibody half-life.

View Article and Find Full Text PDF

Despite the burgeoning field of coronavirus disease-19 (COVID-19) research, the persistence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralising antibodies remains unclear. This study validated two high-throughput immunological methods for use as surrogate live virus neutralisation assays and employed them to examine the half-life of SARS-CoV-2 neutralising antibodies in convalescent plasma donations made by 42 repeat donors between April and September 2020. SARS-CoV-2 neutralising antibody titres decreased over time but typically remained above the methods' diagnostic cut-offs.

View Article and Find Full Text PDF

The small GTPase Ras is an essential component of signal transduction pathways within the cell, controlling proliferation, differentiation, and apoptosis. Only in the GTP-bound form does Ras interact strongly with effector molecules such as Raf-kinase, thus acting as a molecular switch. In the GTP-bound form, Ras exists in a dynamic equilibrium between at least two distinct conformational states, 1(T) and 2(T), offering different functional properties of the protein.

View Article and Find Full Text PDF

Allosteric interactions: Metal(II) cyclens inhibit Ras-effector interactions by stabilizing a weak effector-binding state of Ras, state 1(T), and binding directly in the active site. The novel state (1T) inhibitor Zn(2+)-BPA (BPA = bis(2-picolyl)amine) binds outside the nucleotide binding pocket but nevertheless allosterically stabilizes state 1(T) and thus inhibits the Ras-Raf interaction.

View Article and Find Full Text PDF

Ras is a small GTP-binding protein that is an essential molecular switch for a wide variety of signaling pathways including the control of cell proliferation, cell cycle progression and apoptosis. In the GTP-bound state, Ras can interact with its effectors, triggering various signaling cascades in the cell. In the GDP-bound state, Ras looses its ability to bind to known effectors.

View Article and Find Full Text PDF

The GTP-binding protein Ras plays a central role in the regulation of various cellular processes, acting as a molecular switch that triggers signaling cascades. Only Ras bound to GTP is able to interact strongly with effector proteins like Raf kinase, phosphatidylinositol 3-kinase, and RalGDS, whereas in the GDP-bound state, the stability of the complex is strongly decreased, and signaling is interrupted. To determine whether this process is only controlled by the stability of the complex, we used computer-aided protein design to improve the interaction between Ras and effector.

View Article and Find Full Text PDF

Many biological processes take place in close proximity to lipid membranes. For a detailed understanding of the underlying mechanisms, tools are needed for the quantitative characterization of such biomolecular interactions. In this work, we describe the development of methods addressing the dynamics and affinities of protein complexes attached to an artificial membrane system.

View Article and Find Full Text PDF