Publications by authors named "Daniel Fergus"

The microbiome of built structures has considerable influence over an inhabitant's well-being, yet the vast majority of research has focused on human-built structures. Ants are well-known architects, capable of constructing elaborate dwellings, the microbiome of which is underexplored. Here, we explore the bacterial and fungal microbiomes in functionally distinct chambers within and outside the nests of Azteca alfari ants in Cecropia peltata trees.

View Article and Find Full Text PDF

High-throughput sequencing techniques have opened up the world of microbial diversity to scientists, and a flurry of studies in the most remote and extreme habitats on earth have begun to elucidate the key roles of microbes in ecosystems with extreme conditions. These same environmental extremes can also be found closer to humans, even in our homes. Here, we used high-throughput sequencing techniques to assess bacterial and archaeal diversity in the extreme environments inside human homes (e.

View Article and Find Full Text PDF

An ever expanding body of research investigates the human microbiome in general and the skin microbiome in particular. Microbiomes vary greatly from individual to individual. Understanding the factors that account for this variation, however, has proven challenging, with many studies able to account statistically for just a small proportion of the inter-individual variation in the abundance, species richness or composition of bacteria.

View Article and Find Full Text PDF

Microscopic mites of the genus Demodex live within the hair follicles of mammals and are ubiquitous symbionts of humans, but little molecular work has been done to understand their genetic diversity or transmission. Here we sampled mite DNA from 70 human hosts of diverse geographic ancestries and analyzed 241 sequences from the mitochondrial genome of the species Demodex folliculorum. Phylogenetic analyses recovered multiple deep lineages including a globally distributed lineage common among hosts of European ancestry and three lineages that primarily include hosts of Asian, African, and Latin American ancestry.

View Article and Find Full Text PDF
Article Synopsis
  • Effective communication in animals requires the receiver to detect signals from the sender, such as the vocalizations of midshipman fish during their reproductive season.* -
  • During summer, both male and female midshipman fish show increased sensitivity in their inner ear to better detect male advertisement calls, which is linked to changes in gene expression in their auditory system.* -
  • Gene analysis revealed 74,027 unique transcripts, with significant upregulation in reproductive fish, particularly in genes related to ion channels and steroid signaling, enhancing their auditory functions.*
View Article and Find Full Text PDF

Background: Vocalization is a prominent social behavior among vertebrates, including in the midshipman fish, an established model for elucidating the neural basis of acoustic communication. Courtship vocalizations produced by territorial males are essential for reproductive success, vary over daily and seasonal cycles, and last up to hours per call. Vocalizations rely upon extreme synchrony and millisecond precision in the firing of a homogeneous population of motoneurons, the vocal motor nucleus (VMN).

View Article and Find Full Text PDF

Demodex mites are a group of hair follicle and sebaceous gland-dwelling species. The species of these mites found on humans are arguably the animals with which we have the most intimate interactions. Yet, their prevalence and diversity have been poorly explored.

View Article and Find Full Text PDF

Sensory plasticity related to reproductive state, hormonal profiles, and experience is widespread among vertebrates, including humans. Improvements in audio-vocal coupling that heighten the detection of conspecifics are part of the reproductive strategy of many nonmammalian vertebrates. Although seasonal changes in hearing are known, molecular mechanisms determining this form of adult sensory plasticity remain elusive.

View Article and Find Full Text PDF

Estrogens play a salient role in the development and maintenance of both male and female nervous systems and behaviors. The plainfin midshipman (Porichthys notatus), a teleost fish, has two male reproductive morphs that follow alternative mating tactics and diverge in multiple somatic, hormonal, and neural traits, including the central control of morph-specific vocal behaviors. After we identified duplicate estrogen receptors (ERβ1 and ERβ2) in midshipman, we developed antibodies to localize protein expression in the central vocal-acoustic networks and saccule, the auditory division of the inner ear.

View Article and Find Full Text PDF

Daily activity times and circadian rhythms of crickets have been a subject of behavioral and physiological study for decades. However, recent studies suggest that the underlying molecular mechanism of cricket endogenous clocks differ from the model of circadian rhythm generation in Drosophila. Here we examine the circadian free-running periods of walking and singing in two Hawaiian swordtail cricket species, Laupala cerasina and Laupala paranigra, that differ in the daily timing of mating related activities.

View Article and Find Full Text PDF

Behavioral and neuroendocrine mechanisms of social vocalization in teleost fish are influenced by the glucocorticoid cortisol and the androgen 11-ketotestosterone (11kT). The relative abundance of both 11kT, which binds to androgen receptors (ARα, ARβ), and cortisol, which binds to glucocorticoid receptors (GR-1, GR-2), is regulated by 11β-hydroxylase (11βH) that converts 11-deoxycortisol to cortisol and testosterone to 11β-OH-testosterone, and 11β-hydroxysteroid dehydrogenase (11βHSD) that converts cortisol to the inactive metabolite cortisone and 11β-OH-testosterone to 11kT. In midshipman fish, we tested the hypothesis that plasma steroid levels, mRNA abundance for 11βH and 11βHSD in the vocal muscle and testis (known site of 11kT synthesis), and mRNA abundances for ARs and GRs in vocal muscle, would differ between males that did or did not recently produce 'hum' advertisement calls.

View Article and Find Full Text PDF

Early-life stress caused by the deprivation of maternal care has been shown to have long-lasting effects on the hypothalamic-pituitary-adrenal (HPA) axis in offspring of uniparental mammalian species. We asked if deprivation of maternal care in biparental species alters stress responsiveness of offspring, using a biparental avian species--the zebra finch, Taeniopygia guttata. In our experiment, one group of birds was raised by both male and female parents (control), and another was raised by males alone (maternally deprived).

View Article and Find Full Text PDF

Background: Corticosteroid receptors include mineralocorticoid (MR) and glucocorticoid (GR) receptors. Teleost fishes have a single MR and duplicate GRs that show variable sensitivities to mineralocorticoids and glucocorticoids. How these receptors compare functionally to tetrapod MR and GR, and the evolutionary significance of maintaining two GRs, remains unclear.

View Article and Find Full Text PDF

The Hawaiian cricket genus Laupala (Gryllidae: Trigonidiinae) has undergone rapid and extensive speciation, with divergence in male song and female acoustic preference playing a role in maintaining species boundaries. Recent study of interspecific differences in the diel rhythmicity of singing and mating, suggests that temporal variation in behavior may reduce gene flow between species. In addition, Laupala perform an elaborate and protracted courtship, providing potential for further temporal variation.

View Article and Find Full Text PDF

The rat renal arterial vasculature displays differences in K(+) channel current phenotypes along its length. Small arcuate to cortical radial arteries express a delayed rectifier phenotype, while the predominant Kv current in larger arcuate and interlobar arteries is composed of both transient and sustained components. We sought to determine whether Kvalpha subunits in the rat renal interlobar and arcuate arteries form heterotetramers, which may account for the unique currents, and whether modulatory Kvbeta subunits are present in renal vascular smooth muscle cells.

View Article and Find Full Text PDF

Background: The 85-kDa cytosolic phospholipase A2 (cPLA2) mediates arachidonic acid (AA) release in MDCK cells. Although calcium and mitogen-activated protein kinases regulate cPLA2, the correlation of cPLA2 translocation and phosphorylation with MAPK activation and AA release is unclear.

Results: MEK1 inhibition by U0126 inhibited AA release in response to ATP and ionomycin.

View Article and Find Full Text PDF

The mouse maxi-K channel transcript undergoes alternative splicing to produce isoforms differing in sensitivity to intracellular regulators. We hypothesized that 17beta-estradiol could induce myometrial maxi-K channel transcripts to differentially splice. Polymerase chain reaction demonstrated two products at site D in mice injected with either 8.

View Article and Find Full Text PDF